12-240/Classnotes for Tuesday September 25

From Drorbn
Jump to navigationJump to search

Today's class dealt with the properties of vector spaces.


Definition

Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w [math]\displaystyle{ \in\!\, }[/math] V}

FxV={(c,v): c [math]\displaystyle{ \in\!\, }[/math] F, v [math]\displaystyle{ \in\!\, }[/math] V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 [math]\displaystyle{ \forall\!\, }[/math] x, y [math]\displaystyle{ \in\!\, }[/math] V: x+y = y+x

VS2 [math]\displaystyle{ \forall\!\, }[/math] x, y, z [math]\displaystyle{ \in\!\, }[/math] V: x+(y+z) = (x+y)+z

VS3 [math]\displaystyle{ \forall\!\, }[/math] x [math]\displaystyle{ \in\!\, }[/math] V: 0 ( of V) +x = x

VS4 VS5 VS6

Scanned Notes by Richardm