Additions to this web site no longer count towards good deed points.
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 10
|
About This Class, Tuesday, Thursday
|
2
|
Sep 17
|
HW1, Tuesday, Thursday, HW1 Solutions
|
3
|
Sep 24
|
HW2, Tuesday, Class Photo, Thursday
|
4
|
Oct 1
|
HW3, Tuesday, Thursday
|
5
|
Oct 8
|
HW4, Tuesday, Thursday
|
6
|
Oct 15
|
Tuesday, Thursday
|
7
|
Oct 22
|
HW5, Tuesday, Term Test was on Thursday. HW5 Solutions
|
8
|
Oct 29
|
Why LinAlg?, HW6, Tuesday, Thursday, Nov 4 is the last day to drop this class
|
9
|
Nov 5
|
Tuesday, Thursday
|
10
|
Nov 12
|
Monday-Tuesday is UofT November break, HW7, Thursday
|
11
|
Nov 19
|
HW8, Tuesday,Thursday
|
12
|
Nov 26
|
HW9, Tuesday , Thursday
|
13
|
Dec 3
|
Tuesday UofT Fall Semester ends Wednesday
|
F
|
Dec 10
|
The Final Exam (time, place, style, office hours times)
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
In the second day of the class, the professor continues on the definition of a field.
Definition of a field
Combined with a part from the first class, we have a complete definition as follow:
A field is a set "F' with two binary operations +,x defind on it, and two special elements 0 ≠ 1 such that
F1: commutative law
a, b F: a+b=b+a and a.b=b.a
F2: associative law
a, b, c F: (a+b)+c=a+(b+c) and (a.b).c= a.(b.c)
F3: the existence of identity elements
a , a+0=a and a.1=a
F4: existence of inverses
a F \0, c, d F such that a+c=o and a.d=1
F5: contributive law
a, b, c F, a.(b+c)=a.b + a.c
Theorems
Cancellation laws
a, b, c F
if a+c=b+c, then a=b
if a.c=b.c and c0, a=b
Identity uniqueness
Identity elements 0 and 1 mentioned in F3 are unique
a, b, b' F
if a+b=a and a+b'=a, then b=b'=0
if a.b=a and a.b'=a and a0, then b=b'=1
Inverse uniqueness
Elements c and d mentioned in F4 are unique
a, b, b' F
if a+b=0 and a+b'=0, then b=b'
if a.b=1 and a.b'=1, then b=b'
Significance
Identity uniqueness
It makes sense to define an operation
-: F -> F called "negation"
For a F define -a to be equal that b F for which a+b=0, i.e, a+(-a)=0
Ex: F(5)={0,1,2,3,4}, define +,x
Question: What is(-3)?
Answer: -3=2
Lecture Notes, upload by Starash