14-240/Tutorial-October7: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 9: Line 9:
=====Proof 1=====
=====Proof 1=====


Let <math>W_1</math>, <math>W_2</math> be subspaces of a vector space <math>V</math>. We show that <math>W_1 \cup W_2</math> is a subspace <math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>.
Let <math>W_1</math>, <math>W_2</math> be subspaces of a vector space <math>V</math>. We show that <math>W_1 \cup W_2</math> is a subspace

<math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>.


:Assume that <math>W_1 \cup W_2</math> is a subspace.
:Assume that <math>W_1 \cup W_2</math> is a subspace.
Line 35: Line 37:
:Then <math>W_1 \subset W_2 \or W_2 \subset W_1</math>. ''Q.E.D.''
:Then <math>W_1 \subset W_2 \or W_2 \subset W_1</math>. ''Q.E.D.''


=====Proof 2=====


Let <math>V=\{(a_1, a_2):a_1, a_2 \in R\}</math>. Then <math>\forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R</math>, define

(2) Let <math>V=\{(a_1, a_2):a_1, a_2 \in R\}</math>. Then <math>\forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R</math>, define


<math>(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)</math> and <math>c(a_1, a_2)=(ca_1, ca_2)</math>. We show that <math>V</math> is not a vector
<math>(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)</math> and <math>c(a_1, a_2)=(ca_1, ca_2)</math>. We show that <math>V</math> is not a vector

Revision as of 23:59, 11 October 2014

Boris

Subtle Problems in Proofs

Check out these proofs:

Proof 1

Let , be subspaces of a vector space . We show that is a subspace

.

Assume that is a subspace.
Let .
Then and .
Then .
Case 1: :
Since and has additive inverses, then .
Then .
Case 2: :
Since and has additive inverses, then .
Then .
Then .
Then . Q.E.D.
Proof 2

Let . Then , define

and . We show that is not a vector

space over .

We show that is not commutative.
Let .
Then .
Then is not commutative.
Then is not a vector space. Q.E.D.


Do you spot the subtle error in each?

Nikita