14-240/Tutorial-October7: Difference between revisions
From Drorbn
Jump to navigationJump to search
(→Boris) |
|||
Line 9: | Line 9: | ||
(1) Let <math>W_1</math>, <math>W_2</math> be subspaces of a vector space <math>V</math>. We show that <math>W_1 \cup W_2</math> is a subspace <math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>. |
(1) Let <math>W_1</math>, <math>W_2</math> be subspaces of a vector space <math>V</math>. We show that <math>W_1 \cup W_2</math> is a subspace <math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>. |
||
:Assume that <math>W_1 \cup W_2</math> is a subspace. |
:Assume that <math>W_1 \cup W_2</math> is a subspace. |
||
:Let <math>x \in W_1, y \in W_2</math>. |
:Let <math>x \in W_1, y \in W_2</math>. |
||
:Then <math>x, y \in W_1 \cup W_2</math> and <math>x + y \in W_1 \cup W_2</math>. |
:Then <math>x, y \in W_1 \cup W_2</math> and <math>x + y \in W_1 \cup W_2</math>. |
||
:Then <math>x + y \in W_1 \or x + y \in W_2</math>. |
:Then <math>x + y \in W_1 \or x + y \in W_2</math>. |
||
:Case 1: <math>x + y \in W_1</math>: |
:Case 1: <math>x + y \in W_1</math>: |
||
::Since <math>x \in W_1</math> and <math>W_1</math> has additive inverses, then <math>(-x) \in W_1</math>. |
::Since <math>x \in W_1</math> and <math>W_1</math> has additive inverses, then <math>(-x) \in W_1</math>. |
||
::Then <math>(x+y)+(-x)=y \in W_1</math>. |
::Then <math>(x+y)+(-x)=y \in W_1</math>. |
||
:Case 2: <math>x + y \in W_2</math>: |
:Case 2: <math>x + y \in W_2</math>: |
||
::Since <math>y \in W_2</math> and <math>W_2</math> has additive inverses, then <math>(-y) \in W_2</math>. |
::Since <math>y \in W_2</math> and <math>W_2</math> has additive inverses, then <math>(-y) \in W_2</math>. |
||
::Then <math>(x+y)+(-y)=x \in W_2</math>. |
::Then <math>(x+y)+(-y)=x \in W_2</math>. |
||
:Then <math>x \in W_2 \or y \in W_1</math>. |
:Then <math>x \in W_2 \or y \in W_1</math>. |
||
:Then <math>W_1 \subset W_2 \or W_2 \subset W_1</math>. ''Q.E.D.'' |
:Then <math>W_1 \subset W_2 \or W_2 \subset W_1</math>. ''Q.E.D.'' |
||
Revision as of 23:37, 11 October 2014
|
Boris
Subtle Problems in Proofs
Check out these proofs:
(1) Let , be subspaces of a vector space . We show that is a subspace .
- Assume that is a subspace.
- Let .
- Then and .
- Then .
- Case 1: :
- Since and has additive inverses, then .
- Then .
- Case 2: :
- Since and has additive inverses, then .
- Then .
- Then .
- Then . Q.E.D.
(2) Let . Then , define and . We show that is not a vector space over .