14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:


* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>;
*proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By F3 , <math>a \times 0 = 0 + a \times 0</math>;
By F3 , <math>a \times 0 = 0 + a \times 0</math>;
By Thm P1,<math>0 = a \times 0</math>.
By Thm P1,<math>0 = a \times 0</math>.
9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
* 9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>.
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>.
10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
* 10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
11. <math>(-a) \times (-b) = a \times b</math>.
* 11. <math>(-a) \times (-b) = a \times b</math>.
12. <math>a \times b = 0 \iff a = 0 or b = 0</math>.
* 12. <math>a \times b = 0 \iff a = 0 or b = 0</math>.
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.

Revision as of 22:43, 17 September 2014

Definition:

  • Subtraction: if .
  • Division: if .

Theorem:

  • 8. , .
           *proof of 8: By F3 , 
                              By F5 , ;
                              By F3 , ;
                              By Thm P1,.
       
  • 9. s.t. ;
            s.t. .
                   proof of 9: By F3 , .
       
  • 10. .
  • 11. .
  • 12. .
                   proof of 12: <= : By P8 , if  , then ;
                                     By P8 , if  , then .
                                => : Assume  , if a = 0 we are done;
                                     Otherwise , by P8 ,  and we have ;  
                                                 by cancellation (P2) , .
       

.

        proof: By F5 , 
                                               
                                               

Theorem :

          s.t.
              1. ;
              2. ;
              3. .
        
         
        ......                                                                          
     
        In F2 , 
                                        
                                        
                                        
                                        
                                        
                                        
                                        

http://drorbn.net/images/c/cd/MAT_240_lecture_3_%281_of_2%29.pdf (Lecture 3 notes by AM part 1 of 2) http://drorbn.net/images/6/6a/MAT240_lectuire_3_%282_of_2%29.pdf (Lecture 3 notes by AM part 2 of 2)