12-267/Homework Assignment 6: Difference between revisions
Dongwoo.kang (talk | contribs) No edit summary |
Dongwoo.kang (talk | contribs) No edit summary |
||
| Line 36: | Line 36: | ||
[http://imgur.com/a/53nSl#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
[http://imgur.com/a/53nSl#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
||
Solutions to |
Solutions to HW8: [[User:Dongwoo.kang|Dongwoo.kang]] |
||
<gallery> |
<gallery> |
||
Image: |
Image:hw08-1.jpg|page 1 |
||
Image: |
Image:hw08-2.jpg|page 2 |
||
Image: |
Image:hw08-3.jpg|page 3 |
||
Image: |
Image:hw08-4.jpg|page 4 |
||
Image: |
Image:hw08-5.jpg|page 5 |
||
Image: |
Image:hw08-6.jpg|page 6 |
||
Image:hw08-7.jpg|page 7 |
|||
Image:hw08-8.jpg|page 8 |
|||
Image:hw08-9.jpg|page 9 |
|||
</gallery> |
</gallery> |
||
Revision as of 17:16, 6 December 2012
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due in class on Friday November 9. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong.
Task 1. Draw the phase portraits for the following systems, near [math]\displaystyle{ (x,y)=(0,0) }[/math]:
- [math]\displaystyle{ \begin{cases} \dot{x}=2x+y \\ \dot{y}=-x+4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=4x-5y \\ \dot{y}=4x-4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=x-2y \\ \dot{y}=-2x+4y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=-x+y \\ \dot{y}=-5x+3y \end{cases} }[/math].
- [math]\displaystyle{ \begin{cases} \dot{x}=-5x+4y \\ \dot{y}=-8x+7y \end{cases} }[/math].
Task 2. Draw the phase portrait of the system
[math]\displaystyle{ \begin{cases}\dot{x}=17+x-9y+\sin(2-2x-y+xy)\\\dot{y}=7+2x-5y+\cos(x-1)\end{cases} }[/math]
near the point [math]\displaystyle{ (x,y)=(1,2) }[/math].
Task 3. Solve using diagonalization (one solution is enough):
- [math]\displaystyle{ v'=\begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}v + \begin{pmatrix} e^t \\ t \end{pmatrix} }[/math].
- [math]\displaystyle{ v'=\begin{pmatrix} 2 & -5 \\ 1 & -2 \end{pmatrix}v + \begin{pmatrix} -\cos t \\ \sin t \end{pmatrix} }[/math].
Task 4. Assume [math]\displaystyle{ t\gt 0 }[/math]. For the following equation,
,
it is given that a solution of the homogeneous version is
Use "fundamental solutions" to find a solution of the full equation.
Task 5. (Not for grade). Find a quadratic differential equation whose phase portrait is as below.
Hint. "Monkey Saddle".
| Dror's notes above / Student's notes below |
Solutions to HW8: Dongwoo.kang
- Hw08-1.jpg
page 1
- Hw08-2.jpg
page 2
- Hw08-3.jpg
page 3
- Hw08-4.jpg
page 4
- Hw08-5.jpg
page 5
- Hw08-6.jpg
page 6
- Hw08-7.jpg
page 7
- Hw08-8.jpg
page 8
- Hw08-9.jpg
page 9