12-240/Classnotes for Thursday October 11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 21: Line 21:


ex: dim P(F)= <math>\infty \!\,</math>
ex: dim P(F)= <math>\infty \!\,</math>

3/ Assume dim V = n < <math>\infty \!\,</math> then,


a) If G generate V then |G|<math>\ge \!\,</math> n & some set of G is a basic of V. ( If |G|= n, itself is a basic)

b) If L is linearly independent then |L|<math>\le \!\,</math> n, if |L|=n then L is a basic, if |L|< n then L can be extended to become a basic.


== Lecture notes scanned by [[User:Oguzhancan|Oguzhancan]] ==
== Lecture notes scanned by [[User:Oguzhancan|Oguzhancan]] ==

Revision as of 15:43, 12 October 2012

In this lecture, the professor concentrate on corollaries of basic and dimension.

Annoucements

TA Office Hours (Still pending!) @ 215 Huron St., 10th floor.

Peter - 11am - 1pm

Brandon 1pm - 3pm

Topic: Replacement Theorem

corollaries

1/ If V has a finite basic β1, then any other basic β2 of V is also finite and |β1|=|β2|

2/ "dim V" makes sense

dim V = |β| if V has a finite basic β

Otherwise, dim V =

ex: dim P(F)=

3/ Assume dim V = n < then,


a) If G generate V then |G| n & some set of G is a basic of V. ( If |G|= n, itself is a basic)

b) If L is linearly independent then |L| n, if |L|=n then L is a basic, if |L|< n then L can be extended to become a basic.

Lecture notes scanned by Oguzhancan