12-240/Classnotes for Tuesday September 25: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 23: | Line 23: | ||
VS4 <math>\forall\!\,</math> x <math>\in\!\,</math> V, <math>\exists \!\,</math> V <math>\in\!\,</math> V: v + x= 0 ( of V) |
VS4 <math>\forall\!\,</math> x <math>\in\!\,</math> V, <math>\exists \!\,</math> V <math>\in\!\,</math> V: v + x= 0 ( of V) |
||
VS5 <math>\forall\!\,</math> x <math>\in\!\,</math> V, 1 (of F) .x = x |
|||
VS5 |
|||
VS6 |
|||
VS6 <math>\forall\!\,</math> a, b <math>\in\!\,</math> F, <math>\forall\!\,</math> x <math>\in\!\,</math> V: (ab)x = a(bx) |
|||
VS7 <math>\forall\!\,</math> a <math>\in\!\,</math> F, <math>\forall\!\,</math> x, y <math>\in\!\,</math> V; a(x + y)= ax + ay |
|||
==Scanned Notes by [[User:Richardm|Richardm]]== |
==Scanned Notes by [[User:Richardm|Richardm]]== |
Revision as of 18:41, 25 September 2012
|
Today's class dealt with the properties of vector spaces.
Definition
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V
VxV={(v,w): v,w V}
FxV={(c,v): c F, v V}
Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv
Such that
VS1 x, y V: x+y = y+x
VS2 x, y, z V: x+(y+z) = (x+y)+z
VS3 x V: 0 ( of V) +x = x
VS4 x V, V V: v + x= 0 ( of V)
VS5 x V, 1 (of F) .x = x
VS6 a, b F, x V: (ab)x = a(bx)
VS7 a F, x, y V; a(x + y)= ax + ay