12-240/Classnotes for Tuesday September 18: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
(→Recap:) |
||
Line 4: | Line 4: | ||
Thrm: In a field F: |
Thrm: In a field F: |
||
1. a+b = c+b => a=c |
1. a+b = c+b => a=c |
||
2. b≠0, a∙b=c∙b => a=c |
2. b≠0, a∙b=c∙b => a=c |
||
3. 0 is unique. |
3. 0 is unique. |
||
4. 1 is unique. |
4. 1 is unique. |
||
5. -a is unique. |
5. -a is unique. |
||
6. a^-1 is unique (a≠0) |
6. a^-1 is unique (a≠0) |
||
7. -(-a)=a |
7. -(-a)=a |
||
8. (a^-1)^-1 =a |
8. (a^-1)^-1 =a |
||
9. a∙0=0 **Surprisingly difficult, required distributivity. |
9. a∙0=0 **Surprisingly difficult, required distributivity. |
||
10. ∄ 0^-1, aka, ∄ b∈F s.t 0∙b=1 |
10. ∄ 0^-1, aka, ∄ b∈F s.t 0∙b=1 |
||
11. (-a)∙(-b)=a∙b |
11. (-a)∙(-b)=a∙b |
Revision as of 20:57, 18 September 2012
|
Recap:
Thrm: In a field F: 1. a+b = c+b => a=c
2. b≠0, a∙b=c∙b => a=c
3. 0 is unique.
4. 1 is unique.
5. -a is unique.
6. a^-1 is unique (a≠0)
7. -(-a)=a
8. (a^-1)^-1 =a
9. a∙0=0 **Surprisingly difficult, required distributivity.
10. ∄ 0^-1, aka, ∄ b∈F s.t 0∙b=1
11. (-a)∙(-b)=a∙b