14-240/Tutorial-October7: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 36: Line 36:




(2) Let <math>V=\{(a_1, a_2):a_1, a_2 \in R\}</math>. Then <math>\forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R</math>, define <math>(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)</math> and <math>c(a_1, a_2)=(ca_1, ca_2)</math>. We show that <math>V</math> is not a vector
(2) Let <math>V=\{(a_1, a_2):a_1, a_2 \in R\}</math>. Then <math>\forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R</math>, define

<math>(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)</math> and <math>c(a_1, a_2)=(ca_1, ca_2)</math>. We show that <math>V</math> is not a vector


space over <math>R</math>.
space over <math>R</math>.

Revision as of 23:39, 11 October 2014

Boris

Subtle Problems in Proofs

Check out these proofs:

(1) Let , be subspaces of a vector space . We show that is a subspace

.

Assume that is a subspace.
Let .
Then and .
Then .
Case 1: :
Since and has additive inverses, then .
Then .
Case 2: :
Since and has additive inverses, then .
Then .
Then .
Then . Q.E.D.


(2) Let . Then , define

and . We show that is not a vector

space over .

Nikita