12-240/Classnotes for Tuesday September 25: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 17: Line 17:
VS1 <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: x+y = y+x
VS1 <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: x+y = y+x


VS2 <math>\forall\!\,</math> x, y, z <math>\in\!\,</math> V: x+(y+z) = (x+y)+z
VS2

VS3
VS3
VS4
VS4

Revision as of 18:35, 25 September 2012

Today's class dealt with the properties of vector spaces.


Definition

Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w V}

FxV={(c,v): c F, v V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 x, y V: x+y = y+x

VS2 x, y, z V: x+(y+z) = (x+y)+z

VS3 VS4 VS5 VS6

Scanned Notes by Richardm