12-240/Classnotes for Tuesday September 25: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 17: | Line 17: | ||
VS1 <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: x+y = y+x |
VS1 <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: x+y = y+x |
||
VS2 <math>\forall\!\,</math> x, y, z <math>\in\!\,</math> V: x+(y+z) = (x+y)+z |
|||
VS2 |
|||
VS3 |
VS3 |
||
VS4 |
VS4 |
Revision as of 18:35, 25 September 2012
|
Today's class dealt with the properties of vector spaces.
Definition
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V
VxV={(v,w): v,w V}
FxV={(c,v): c F, v V}
Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv
Such that
VS1 x, y V: x+y = y+x
VS2 x, y, z V: x+(y+z) = (x+y)+z
VS3 VS4 VS5 VS6