12-240/Classnotes for Tuesday September 18: Difference between revisions
From Drorbn
Jump to navigationJump to search
(→Recap:) |
(→Recap:) |
||
Line 1: | Line 1: | ||
{{12-240/Navigation}} |
{{12-240/Navigation}} |
||
== Various properties of fields == |
|||
== Recap: == |
|||
Thrm: In a field F: |
Thrm: In a field F: |
||
1. a+b = c+b |
1. a+b = c+b ⇒ a=c |
||
2. b≠0, a∙b=c∙b |
2. b≠0, a∙b=c∙b ⇒ a=c |
||
3. 0 is unique. |
3. 0 is unique. |
||
Line 24: | Line 24: | ||
11. (-a)∙(-b)=a∙b |
11. (-a)∙(-b)=a∙b |
||
12. a∙b=0 ''iff'' a=0 or b=0 |
|||
. |
|||
. |
|||
. |
|||
16. (a+b)∙(a-b)= a^2 - b^2 |
|||
[Define a^2 = a∙a] |
|||
Hint: Use distributive law |
|||
Thrm 2: Given a field F, there exists a map Ɩ: Z → F with the properties: |
|||
1) Ɩ(0) =0, Ɩ(1)=1 |
|||
2) Ɩ(m+n) = Ɩ(m) +Ɩ(n) |
|||
3) Ɩ(mn) = Ɩ(m)∙Ɩ(n) |
|||
Furthermore, Ɩ is unique. |
Revision as of 21:03, 18 September 2012
|
Various properties of fields
Thrm: In a field F: 1. a+b = c+b ⇒ a=c
2. b≠0, a∙b=c∙b ⇒ a=c
3. 0 is unique.
4. 1 is unique.
5. -a is unique.
6. a^-1 is unique (a≠0)
7. -(-a)=a
8. (a^-1)^-1 =a
9. a∙0=0 **Surprisingly difficult, required distributivity.
10. ∄ 0^-1, aka, ∄ b∈F s.t 0∙b=1
11. (-a)∙(-b)=a∙b
12. a∙b=0 iff a=0 or b=0
. . .
16. (a+b)∙(a-b)= a^2 - b^2 [Define a^2 = a∙a] Hint: Use distributive law
Thrm 2: Given a field F, there exists a map Ɩ: Z → F with the properties:
1) Ɩ(0) =0, Ɩ(1)=1
2) Ɩ(m+n) = Ɩ(m) +Ɩ(n)
3) Ɩ(mn) = Ɩ(m)∙Ɩ(n)
Furthermore, Ɩ is unique.