12-240/Classnotes for Tuesday September 18: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 1: Line 1:
{{12-240/Navigation}}
{{12-240/Navigation}}


== Various properties of fields ==
== Recap: ==
Thrm: In a field F:
Thrm: In a field F:
1. a+b = c+b => a=c
1. a+b = c+b a=c


2. b≠0, a∙b=c∙b => a=c
2. b≠0, a∙b=c∙b a=c


3. 0 is unique.
3. 0 is unique.
Line 24: Line 24:


11. (-a)∙(-b)=a∙b
11. (-a)∙(-b)=a∙b

12. a∙b=0 ''iff'' a=0 or b=0

.
.
.

16. (a+b)∙(a-b)= a^2 - b^2
[Define a^2 = a∙a]
Hint: Use distributive law

Thrm 2: Given a field F, there exists a map Ɩ: Z → F with the properties:

1) Ɩ(0) =0, Ɩ(1)=1

2) Ɩ(m+n) = Ɩ(m) +Ɩ(n)

3) Ɩ(mn) = Ɩ(m)∙Ɩ(n)

Furthermore, Ɩ is unique.

Revision as of 21:03, 18 September 2012

Various properties of fields

Thrm: In a field F: 1. a+b = c+b ⇒ a=c

2. b≠0, a∙b=c∙b ⇒ a=c

3. 0 is unique.

4. 1 is unique.

5. -a is unique.

6. a^-1 is unique (a≠0)

7. -(-a)=a

8. (a^-1)^-1 =a

9. a∙0=0 **Surprisingly difficult, required distributivity.

10. ∄ 0^-1, aka, ∄ b∈F s.t 0∙b=1

11. (-a)∙(-b)=a∙b

12. a∙b=0 iff a=0 or b=0

. . .

16. (a+b)∙(a-b)= a^2 - b^2 [Define a^2 = a∙a] Hint: Use distributive law

Thrm 2: Given a field F, there exists a map Ɩ: Z → F with the properties:

1) Ɩ(0) =0, Ɩ(1)=1

2) Ɩ(m+n) = Ɩ(m) +Ɩ(n)

3) Ɩ(mn) = Ɩ(m)∙Ɩ(n)

Furthermore, Ɩ is unique.