12-240/Classnotes for Tuesday September 25: Difference between revisions

From Drorbn
Jump to navigationJump to search
 
(16 intermediate revisions by 3 users not shown)
Line 5: Line 5:


== Definition ==
== Definition ==
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: +: VxV->V, .: FxV->V
Let F be a field. A vector space V over F is a set V of vectors with special element O ( of V) and two operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w <math>\in\!\,</math> V}

FxV={(c,v): c <math>\in\!\,</math> F, v <math>\in\!\,</math> V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: x+y = y+x

VS2 <math>\forall\!\,</math> x, y, z <math>\in\!\,</math> V: x+(y+z) = (x+y)+z

VS3 <math>\forall\!\,</math> x <math>\in\!\,</math> V: 0 ( of V) +x = x

VS4 <math>\forall\!\,</math> x <math>\in\!\,</math> V, <math>\exists \!\,</math> V <math>\in\!\,</math> V: v + x= 0 ( of V)

VS5 <math>\forall\!\,</math> x <math>\in\!\,</math> V, 1 (of F) .x = x

VS6 <math>\forall\!\,</math> a, b <math>\in\!\,</math> F, <math>\forall\!\,</math> x <math>\in\!\,</math> V: (ab)x = a(bx)

VS7 <math>\forall\!\,</math> a <math>\in\!\,</math> F, <math>\forall\!\,</math> x, y <math>\in\!\,</math> V: a(x + y)= ax + ay

VS8 <math>\forall\!\,</math> a, b <math>\in\!\,</math> F, <math>\forall\!\,</math> x <math>\in\!\,</math> V: (a + b)x = ax + bx

== Examples ==


==Properties ==

==Polynomials==
'''Definition''' : Pn(F) = {all polynomials of degree less than or equal to n with coefficients in F}
= {anx^n + an-1x^n-1 + ... + a1x^1 + a1x^1}

0 = 0x^n + 0x^n-1 +...+ 0x^0

addition and multiplication: as you imagine

P(f) = {all polynomials with coefficients in F}

Take F= '''Z'''/2 |F| = 2

|P(F)| = infinite

in Pn('''Z'''/2) x^3≠x^2
x^3 = 1*x^3+0x^2+0x+O = f
x^2 = 1*x^2+0x+0 = g
yet f(0)= g(0) and f(1)=g(1)

==Theorem==
1. Cancellation Laws
(a) x+z=y+z ==> x=y
(b) ax=ay,a≠0 ==> x=y
(c) x≠0 of V, ax=bx ==> a=b

2. 0 of V is unique

3. Negatives are unique (so subtraction makes sense

4.(0 of F)x = 0 of V

5. a∙0=0

6. (-a)x = -(ax) = a(-x)

7. a∙v=0 <==> a=0 or v=0

==Proof==
1. (a) x+z=y+z
Find a w s.t. z+w=0 (V.S. 4)
(x+z)+w = (y+z)+w
Use VS2
x+(z+w) = y +(z+w)
x + 0 = y + o
Use VS3 x=y


==Scanned Notes by [[User:Richardm|Richardm]]==
==Scanned Notes by [[User:Richardm|Richardm]]==

Latest revision as of 04:41, 7 December 2012

Today's class dealt with the properties of vector spaces.


Definition

Let F be a field. A vector space V over F is a set V of vectors with special element O ( of V) and two operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w V}

FxV={(c,v): c F, v V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 x, y V: x+y = y+x

VS2 x, y, z V: x+(y+z) = (x+y)+z

VS3 x V: 0 ( of V) +x = x

VS4 x V, V V: v + x= 0 ( of V)

VS5 x V, 1 (of F) .x = x

VS6 a, b F, x V: (ab)x = a(bx)

VS7 a F, x, y V: a(x + y)= ax + ay

VS8 a, b F, x V: (a + b)x = ax + bx

Examples

Properties

Polynomials

Definition : Pn(F) = {all polynomials of degree less than or equal to n with coefficients in F}

                        = {anx^n + an-1x^n-1 + ... + a1x^1 + a1x^1}

0 = 0x^n + 0x^n-1 +...+ 0x^0

addition and multiplication: as you imagine

P(f) = {all polynomials with coefficients in F}

Take F= Z/2 |F| = 2

|P(F)| = infinite

in Pn(Z/2) x^3≠x^2

                  x^3 = 1*x^3+0x^2+0x+O = f
                  x^2 = 1*x^2+0x+0 = g
                  yet f(0)= g(0) and f(1)=g(1)

Theorem

1. Cancellation Laws

  (a) x+z=y+z         ==> x=y
  (b) ax=ay,a≠0       ==> x=y
  (c) x≠0 of V, ax=bx ==> a=b

2. 0 of V is unique

3. Negatives are unique (so subtraction makes sense

4.(0 of F)x = 0 of V

5. a∙0=0

6. (-a)x = -(ax) = a(-x)

7. a∙v=0 <==> a=0 or v=0

Proof

1. (a) x+z=y+z

       Find a w s.t. z+w=0 (V.S. 4)
      (x+z)+w = (y+z)+w
 Use VS2
       x+(z+w) = y +(z+w)
       x + 0   = y + o
 Use VS3      x=y

Scanned Notes by Richardm