14-240/Tutorial-October14: Difference between revisions
No edit summary |
|||
Line 6: | Line 6: | ||
'''Bad Notation''' |
(1) '''Bad Notation''' |
||
Line 59: | Line 59: | ||
</math> where <math>F</math> is an arbitrary field. |
</math> where <math>F</math> is an arbitrary field. |
||
==Nikita== |
|||
(2) '''Algorithm vs. Proof''' |
|||
When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show: |
|||
:a) An algorithm for finding the solution |
|||
:b) A proof that a solution is correct |
|||
If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this: |
|||
Determine if the vector <math>(-2, 2, 2)</math> is a linear combination of the vectors <math>(- (1, 2, -1), (-3, -3, 3)</math> in <math>R^3</math>. |
|||
Show both (a) and (b) to be on the safe side. |
|||
====Problem 5h) of Homework 3 for all Fields==== |
|||
For a field <math>F</math>, determine if the matrix |
|||
<math> |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
</math> |
|||
is in span |
|||
<math>S=\{ |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
-1 & 0 \\ |
|||
\end{pmatrix}, |
|||
\begin{pmatrix} |
|||
0 & 1 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix}, |
|||
\begin{pmatrix} |
|||
1 & 1 \\ |
|||
0 & 0 \\ |
|||
\end{pmatrix} |
|||
\} |
|||
</math>. |
|||
'''Proof:''' |
|||
We show that |
|||
<math> |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) \iff char(F)=2</math>. |
|||
:We show that <math>char(F)=2 \implies |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) |
|||
</math>. |
|||
::Assume that <math>char(F)=2</math>. |
|||
::Let <math>c_1=0, c_2=1, c_3=1</math>. |
|||
::Then <math>c_1, c_2, c_3 \in F</math>. |
|||
::Then <math> |
|||
c_1 |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
-1 & 0 \\ |
|||
\end{pmatrix} |
|||
+ c_2 |
|||
\begin{pmatrix} |
|||
0 & 1 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
+ c_3 = |
|||
0 |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
-1 & 0 \\ |
|||
\end{pmatrix} |
|||
+ 1 |
|||
\begin{pmatrix} |
|||
0 & 1 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
+ 1 = |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
-1 & 0 \\ |
|||
\end{pmatrix} |
|||
+ |
|||
\begin{pmatrix} |
|||
0 & 1 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix}</math> |
|||
:::::<math> |
|||
= |
|||
\begin{pmatrix} |
|||
1 & 2 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
</math>. |
|||
::Since <math>char(F)=2</math> and the entries of the matrix are from <math>F</math>, then <math>0=2</math>. |
|||
::Then <math> |
|||
\begin{pmatrix} |
|||
1 & 2 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
= |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) |
|||
</math>. |
|||
::Then <math> |
|||
char(F)=2 \implies |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) |
|||
</math>. |
|||
:We show that <math>char(F) \neq 2 \implies |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\notin span(S) |
|||
</math>. |
|||
::Assume to the contrary that <math> |
|||
char(F) \neq 2 \and |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) |
|||
</math>. |
|||
::Then <math>\exists c_1, c_2, c_3 \in F, |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
=c_1 |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
-1 & 0 \\ |
|||
\end{pmatrix} |
|||
+c_2 |
|||
\begin{pmatrix} |
|||
0 & 1 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
+c_3 |
|||
\begin{pmatrix} |
|||
1 & 1 \\ |
|||
0 & 0 \\ |
|||
\end{pmatrix} |
|||
</math>. |
|||
::Then this system of linear equations has a solution: |
|||
:::<math>(11)c_1+c_3=1</math> |
|||
:::<math>(21)-c_1=0</math> |
|||
:::<math>(12)c_2+c_3=0</math> |
|||
:::<math>(22)c_2=1</math>. |
|||
::When solving the system, we see that it has no solution. |
|||
::This contradicts the assumption that it has a solution. |
|||
::Then <math> |
|||
char(F) \neq2 \implies |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\notin span(S) |
|||
</math>. |
|||
:Then <math> |
|||
\begin{pmatrix} |
|||
1 & 0 \\ |
|||
0 & 1 \\ |
|||
\end{pmatrix} |
|||
\in span(S) \iff char(F)=2</math>. ''Q.E.D.'' |
|||
====A Field Problem==== |
|||
====A Dimension Problem==== |
Revision as of 00:28, 15 October 2014
|
Boris
Elementary and (Not So Elementary) Errors in Homework
(1) Bad Notation
Let be matrices.
We want to equate to the set of all symmetric matrices. Here is the wrong way to write this:
.
Firstly, is the set of all linear combinations of . To equate it to a single
symmetric matrix makes no sense. Secondly, the elements are undefined. What are they suppose to
represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those
issues:
where is an arbitrary field.
(2) Algorithm vs. Proof
When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show:
- a) An algorithm for finding the solution
- b) A proof that a solution is correct
If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this:
Determine if the vector is a linear combination of the vectors in .
Show both (a) and (b) to be on the safe side.
Problem 5h) of Homework 3 for all Fields
For a field , determine if the matrix is in span .
Proof:
We show that .
- We show that .
- Assume that .
- Let .
- Then .
- Then
- .
- Since and the entries of the matrix are from , then .
- Then .
- Then .
- We show that .
- Assume to the contrary that .
- Then .
- Then this system of linear equations has a solution:
- .
- When solving the system, we see that it has no solution.
- This contradicts the assumption that it has a solution.
- Then .
- Then . Q.E.D.