14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 7: Line 7:


* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>;
*proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By F3 , <math>a \times 0 = 0 + a \times 0</math>;
By F3 , <math>a \times 0 = 0 + a \times 0</math>;
By Thm P1,<math>0 = a \times 0</math>.
By Thm P1,<math>0 = a \times 0</math>.
9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
* 9. <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>.
proof of 9: By F3 , <math>\times b = 0 \neq 1</math>.
10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
* 10. <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
11. <math>(-a) \times (-b) = a \times b</math>.
* 11. <math>(-a) \times (-b) = a \times b</math>.
12. <math>a \times b = 0 \iff a = 0 or b = 0</math>.
* 12. <math>a \times b = 0 \iff a = 0 or b = 0</math>.
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
proof of 12: <= : By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.
By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.

Revision as of 22:43, 17 September 2014

Definition:

  • Subtraction: if [math]\displaystyle{ a, b \in F, a - b = a + (-b) }[/math].
  • Division: if [math]\displaystyle{ a, b \in F, a / b = a \times b^{-1} }[/math].

Theorem:

  • 8. [math]\displaystyle{ \forall a \in F }[/math], [math]\displaystyle{ a \times 0 = 0 }[/math].
           *proof of 8: By F3 , [math]\displaystyle{ a \times 0 = a \times (0 + 0) }[/math]
                              By F5 , [math]\displaystyle{ a \times (0 + 0) = a \times 0 + a \times 0 }[/math];
                              By F3 , [math]\displaystyle{ a \times 0 = 0 + a \times 0 }[/math];
                              By Thm P1,[math]\displaystyle{ 0 = a \times 0 }[/math].
       
  • 9. [math]\displaystyle{ \nexists b \in F }[/math] s.t. [math]\displaystyle{ 0 \times b = 1 }[/math];
           [math]\displaystyle{ \forall b \in F }[/math] s.t. [math]\displaystyle{ 0 \times b \neq 1 }[/math].
                   proof of 9: By F3 , [math]\displaystyle{ \times b = 0 \neq 1 }[/math].
       
  • 10. [math]\displaystyle{ (-a) \times b = a \times (-b) = -(a \times b) }[/math].
  • 11. [math]\displaystyle{ (-a) \times (-b) = a \times b }[/math].
  • 12. [math]\displaystyle{ a \times b = 0 \iff a = 0 or b = 0 }[/math].
                   proof of 12: <= : By P8 , if [math]\displaystyle{ a = 0 }[/math] , then [math]\displaystyle{ a \times b = 0 \times b = 0 }[/math];
                                     By P8 , if [math]\displaystyle{ b = 0 }[/math] , then [math]\displaystyle{ a \times b = a \times 0 = 0 }[/math].
                                => : Assume [math]\displaystyle{ a \times b = 0  }[/math] , if a = 0 we are done;
                                     Otherwise , by P8 , [math]\displaystyle{ a \neq 0  }[/math] and we have [math]\displaystyle{ a \times b = 0 = a \times 0 }[/math];  
                                                 by cancellation (P2) , [math]\displaystyle{ b = 0 }[/math].
       

[math]\displaystyle{ (a + b) \times (a - b) = a^2 - b^2 }[/math].

        proof: By F5 , [math]\displaystyle{ (a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b)) }[/math]
                                               [math]\displaystyle{ = a \times a + a \times (-b) + b \times a + (-b) \times b }[/math]
                                               [math]\displaystyle{ = a^2 - b^2 }[/math]

Theorem :

        [math]\displaystyle{ \exists! \iota : \Z \rightarrow F }[/math]  s.t.
              1. [math]\displaystyle{ \iota(0) = 0 , \iota(1) = 1 }[/math];
              2. [math]\displaystyle{ \forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n) }[/math];
              3. [math]\displaystyle{ \forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n) }[/math].
        [math]\displaystyle{ \iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1; }[/math]
        [math]\displaystyle{ \iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1; }[/math] 
        ......                                                                          
     
        In F2 , [math]\displaystyle{ 27 ----\gt  \iota(27) = \iota(26 + 1) }[/math]
                                        [math]\displaystyle{ = \iota(26) + \iota(1) }[/math]
                                        [math]\displaystyle{ = \iota(26) + 1 }[/math]
                                        [math]\displaystyle{ = \iota(13 \times 2) + 1 }[/math]
                                        [math]\displaystyle{ = \iota(2) \times \iota(13) + 1 }[/math]
                                        [math]\displaystyle{ = (1 + 1) \times \iota(13) + 1 }[/math]
                                        [math]\displaystyle{ = 0 \times \iota(13) + 1 }[/math]
                                        [math]\displaystyle{ = 1 }[/math]

http://drorbn.net/images/c/cd/MAT_240_lecture_3_%281_of_2%29.pdf (Lecture 3 notes by AM part 1 of 2) http://drorbn.net/images/6/6a/MAT240_lectuire_3_%282_of_2%29.pdf (Lecture 3 notes by AM part 2 of 2)