12-240/Classnotes for Thursday September 13: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 37: Line 37:
if a+c=b+c, then a=b
if a+c=b+c, then a=b


if a.c=b.c and c<math>\ne \!\, then </math>0, a=b
if a.c=b.c and c<math>\ne \!\,</math>0, then a=b


'''Theorem 2: Identity uniqueness'''
'''Theorem 2: Identity uniqueness'''

Latest revision as of 01:01, 23 October 2012

In the second day of the class, the professor continues on the definition of a field.

Definition of a field

Combined with a part from the first class, we have a complete definition as follow:

A field is a set "F' with two binary operations +,x defind on it, and two special elements 0 ≠ 1 such that

F1: commutative law

a, b F: a+b=b+a and a.b=b.a

F2: associative law

a, b, c F: (a+b)+c=a+(b+c) and (a.b).c= a.(b.c)


F3: the existence of identity elements

a , a+0=a and a.1=a


F4: existence of inverses

a F \0, c, d F such that a+c=o and a.d=1


F5: contributive law

a, b, c F, a.(b+c)=a.b + a.c

Theorems

Theorem 1: Cancellation laws a, b, c F

if a+c=b+c, then a=b

if a.c=b.c and c0, then a=b

Theorem 2: Identity uniqueness

Identity elements 0 and 1 mentioned in F3 are unique

a, b, b' F

if a+b=a and a+b'=a, then b=b'=0

if a.b=a and a.b'=a and a0, then b=b'=1

Theorem 3: Inverse uniqueness

Elements c and d mentioned in F4 are unique

a, b, b' F

if a+b=0 and a+b'=0, then b=b'

if a.b=1 and a.b'=1, then b=b'

Theorem 4

a F

-( -a) = a

Theorem 4

a F

0.a= 0

Significance

inverse uniqueness

It makes sense to define an operation -: F -> F called "negation"

For a F define -a to be equal that b F for which a+b=0, i.e, a+(-a)=0

Ex: F(5)={0,1,2,3,4}, define +,x

Question 1: What is(-3)?

Answer: -3=2 and -3 is unique

Similarly, the inverse uniqueness also makes sense a^(-1)


identity uniqueness

Lecture Notes, upload by Starash