|
|
Line 19: |
Line 19: |
|
** Yes. [[User:Drorbn|Drorbn]] 19:14, 19 November 2010 (EST) |
|
** Yes. [[User:Drorbn|Drorbn]] 19:14, 19 November 2010 (EST) |
|
|
|
|
|
|
---- |
|
*Questions: |
|
|
⚫ |
Questions by Kai [[User:Xwbdsb|Xwbdsb]] 21:26, 19 November 2010 (EST) : |
|
|
|
|
|
(1)I have concern about this "Adding T_1 thing". When we are proving the Urysohn's Lemma, we proved that if X is a T.S. and A,B are any two disjoint closed sets in X, they can be separated by two disjoint open sets in X iff they can be separated by a continuous function. So there is no T_1 axiom involved in any of these two proofs. So Urysohn's Lemma is something more general than T_4 iff T_4.5 right?
|
|
# I have concern about this "Adding T_1 thing". When we are proving the Urysohn's Lemma, we proved that if X is a T.S. and A,B are any two disjoint closed sets in X, they can be separated by two disjoint open sets in X iff they can be separated by a continuous function. So there is no T_1 axiom involved in any of these two proofs. So Urysohn's Lemma is something more general than T_4 iff T_4.5 right? |
|
⚫ |
# I just want to also confirm the definition of T_4 and T_4.5: T_4 is T_1 + separation by two disjoint open sets for any two disjoint closed sets and T_4.5 is T_1 + separation by a continuous function for any two disjoint closed sets? |
|
|
|
|
⚫ |
# The only purpose of this manually adding T_1 thing is that so that T_4 and T_4.5 could imply T_3 T_2 T_1 right? |
⚫ |
(2)I just want to also confirm the definition of T_4 and T_4.5: T_4 is T_1 + separation by two disjoint open sets for any two disjoint closed sets and T_4.5 is T_1 + separation by a continuous function for any two disjoint closed sets? |
|
|
⚫ |
# Dror you said before that induction can go up to finite n but why in this case induction will work for a countably infinite set of elements? |
|
|
|
⚫ |
(3)The only purpose of this manually adding T_1 thing is that so that T_4 and T_4.5 could imply T_3 T_2 T_1 right? |
|
|
|
|
⚫ |
(4)Dror you said before that induction can go up to finite n but why in this case induction will work for a countably infinite set |
|
|
of elements? |
|
|
|
|
⚫ |
-Kai[[User:Xwbdsb|Xwbdsb]] 21:26, 19 November 2010 (EST) |
|
Revision as of 05:52, 20 November 2010
Additions to the MAT 327 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 13
|
About This Class, Monday - Continuity and open sets, Thursday - topologies, continuity, bases.
|
2
|
Sep 20
|
Monday - More on bases, Thursdsay - Products, Subspaces, Closed sets, HW1, HW1 Solutions
|
3
|
Sep 27
|
Monday - the Cantor set, closures, Thursday, Class Photo, HW2, HW2 Solutions
|
4
|
Oct 4
|
Monday - the axiom of choice and infinite product spaces, Thursday - the box and the product topologies, metric spaces, HW3, HW3 Solutions
|
5
|
Oct 11
|
Monday is Thanksgiving. Thursday - metric spaces, sequencial closures, various products. Final exam's date announced on Friday.
|
6
|
Oct 18
|
Monday - connectedness in , HW4, HW4 Solutions, Thursday - connectedness, path-connectedness and products
|
7
|
Oct 25
|
Monday - Compactness of , Term Test on Thursday, TT Solutions
|
8
|
Nov 1
|
Monday - compact is closed and bounded, maximal values, HW5, HW5 Solutions, Wednesday was the last date to drop this course, Thursday - compactness of products and in metric spaces, the FIP
|
9
|
Nov 8
|
Monday-Tuesday is Fall Break, Thursday - Tychonoff and a taste of Stone-Cech, HW6, HW6 Solutions
|
10
|
Nov 15
|
Monday - generalized limits, Thursday - Normal spaces and Urysohn's lemma, HW7, HW7 Solutions
|
11
|
Nov 22
|
Monday - and , Thursday - Tietze's theorem
|
12
|
Nov 29
|
Monday - compactness in metric spaces, HW8, HW8 Solutions, Thursday - completeness and compactness
|
13
|
Dec 6
|
Monday - Baire spaces and no-where differentiable functions, Wednesday - Hilbert's 13th problem; also see December 2010 Schedule
|
R
|
Dec 13
|
See December 2010 Schedule
|
F
|
Dec 20
|
Final exam, Monday December 20, 2PM-5PM, at BR200
|
Register of Good Deeds
|
Add your name / see who's in!
|
See Hilbert's 13th
|
|
Reading
Read sections in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections , just to get a feel for the future.
Doing
Solve and submit the following problems from Munkres' book:
- Problem 1 on page 199.
- Problem 1 on page 205.
- Problems 1, 4, 5, 8, 9 on pages 212-213.
Remark. The following fact, which we will prove later, may be used without a proof: If is a topological space and are continuous functions, then the sum is convergent and defines a continuous function on .
Due date
This assignment is due at the end of class on Thursday, November 25, 2010.
|
Dror's notes above / Student's notes below
|
|
- Question: In problem 1 p205, is asks us to show that any closed subspace of a normal space is also normal. Do we really need the condition that the subspace be closed? - Jdw
- Yes. Drorbn 19:14, 19 November 2010 (EST)
Questions by Kai Xwbdsb 21:26, 19 November 2010 (EST):
- I have concern about this "Adding T_1 thing". When we are proving the Urysohn's Lemma, we proved that if X is a T.S. and A,B are any two disjoint closed sets in X, they can be separated by two disjoint open sets in X iff they can be separated by a continuous function. So there is no T_1 axiom involved in any of these two proofs. So Urysohn's Lemma is something more general than T_4 iff T_4.5 right?
- I just want to also confirm the definition of T_4 and T_4.5: T_4 is T_1 + separation by two disjoint open sets for any two disjoint closed sets and T_4.5 is T_1 + separation by a continuous function for any two disjoint closed sets?
- The only purpose of this manually adding T_1 thing is that so that T_4 and T_4.5 could imply T_3 T_2 T_1 right?
- Dror you said before that induction can go up to finite n but why in this case induction will work for a countably infinite set of elements?