Additions to the MAT 327 web site no longer count towards good deed points

#

Week of...

Notes and Links

1

Sep 13

About This Class, Monday  Continuity and open sets, Thursday  topologies, continuity, bases.

2

Sep 20

Monday  More on bases, Thursdsay  Products, Subspaces, Closed sets, HW1, HW1 Solutions

3

Sep 27

Monday  the Cantor set, closures, Thursday, Class Photo, HW2, HW2 Solutions

4

Oct 4

Monday  the axiom of choice and infinite product spaces, Thursday  the box and the product topologies, metric spaces, HW3, HW3 Solutions

5

Oct 11

Monday is Thanksgiving. Thursday  metric spaces, sequencial closures, various products. Final exam's date announced on Friday.

6

Oct 18

Monday  connectedness in , HW4, HW4 Solutions, Thursday  connectedness, pathconnectedness and products

7

Oct 25

Monday  Compactness of , Term Test on Thursday, TT Solutions

8

Nov 1

Monday  compact is closed and bounded, maximal values, HW5, HW5 Solutions, Wednesday was the last date to drop this course, Thursday  compactness of products and in metric spaces, the FIP

9

Nov 8

MondayTuesday is Fall Break, Thursday  Tychonoff and a taste of StoneCech, HW6, HW6 Solutions

10

Nov 15

Monday  generalized limits, Thursday  Normal spaces and Urysohn's lemma, HW7, HW7 Solutions

11

Nov 22

Monday  and , Thursday  Tietze's theorem

12

Nov 29

Monday  compactness in metric spaces, HW8, HW8 Solutions, Thursday  completeness and compactness

13

Dec 6

Monday  Baire spaces and nowhere differentiable functions, Wednesday  Hilbert's 13th problem; also see December 2010 Schedule

R

Dec 13

See December 2010 Schedule

F

Dec 20

Final exam, Monday December 20, 2PM5PM, at BR200

Register of Good Deeds

Add your name / see who's in!

See Hilbert's 13th


See some blackboard shots at BBS/10_327101014142707.jpg.

Dror's notes above / Student's notes below


Here are some lecture notes..
Lecture 9 page 1
Lecture 9 page 2
Lecture 9 page 3
Lecture 9 page 4
Lecture 9 page 5
Lecture 9 page 6
Riddles
The Dice Game
Two players A and B decide to play a game.
Player A takes 3 blank dice and labels them with the numbers 118.
Player B then picks one of the three die.
Then Player A picks one of the remaining two die.
The players then roll their dice, and the highest number wins the round.
They play 10,023 rounds.
Who would you rather be Player A or B?
Almost Disjoint Subsets
Find an uncountable collection of subsets of such that any two subsets only contain a finite number of points in their intersection. Don't cheat by using the axiom of choice!
10327/Solution to Almost Disjoint Subsets
 I wasn't there for this riddle but it sounded interesting, though I might have the phrasing wrong  John.
 Feel free to cheat and use the axiom of choice  I don't see how it would help anyway. Drorbn 17:40, 18 October 2010 (EDT)
Solutions
4 Solutions to problems in Munkre's book regard to Metrics and Metric topology. Kai Xwbdsb 16:47, 28 October 2010 (EDT)
page1
page2
page3
page4
page5