10-327/Classnotes for Thursday October 14

From Drorbn
Jump to: navigation, search

See some blackboard shots at BBS/10_327-101014-142707.jpg.

Dror's notes above / Student's notes below

Here are some lecture notes..

Lecture 9 page 1

Lecture 9 page 2

Lecture 9 page 3

Lecture 9 page 4

Lecture 9 page 5

Lecture 9 page 6



The Dice Game

Two players A and B decide to play a game. Player A takes 3 blank dice and labels them with the numbers 1-18. Player B then picks one of the three die. Then Player A picks one of the remaining two die. The players then roll their dice, and the highest number wins the round. They play 10,023 rounds. Who would you rather be Player A or B?

Almost Disjoint Subsets

Find an uncountable collection of subsets of \mathbb{N} such that any two subsets only contain a finite number of points in their intersection. Don't cheat by using the axiom of choice!

10-327/Solution to Almost Disjoint Subsets

  • I wasn't there for this riddle but it sounded interesting, though I might have the phrasing wrong - John.
  • Feel free to cheat and use the axiom of choice - I don't see how it would help anyway. Drorbn 17:40, 18 October 2010 (EDT)


4 Solutions to problems in Munkre's book regard to Metrics and Metric topology. -Kai Xwbdsb 16:47, 28 October 2010 (EDT)

page1 page2 page3 page4 page5