14-240/Tutorial-November11

From Drorbn
Jump to navigationJump to search

Boris

Useful Definitions

Let be a finite dimensional vector space over a field , be an ordered basis of and . Then where . Then the coordinate vector of relative to is the column vector .


Let be a finite dimensional vector space over the same field and be an ordered basis of . Define a linear transformation . Then where . Then the matrix representation of in the ordered bases is the matrix .


Boris's Problems

Let be the standard ordered basis of and be the standard ordered basis of .


Q1. What is the coordinate vector of relative to ?


Q2. Let be a linear transformation that is defined by . What is the matrix representation of in ?

Nikita