12-267/Tuesday September 11 Notes

From Drorbn
Revision as of 16:05, 4 October 2012 by Twine (talk | contribs) (Minor formatting edit)
Jump to navigationJump to search


Solving the complicated integral in the Brachistochroe integral

integral sqrt((d-y)/y) dy
=  integral sqrt(d y-y^2)/y dy

For the integrand sqrt(d y-y^2)/y, complete the square:

=  integral sqrt(d^2/4-(y-d/2)^2)/y dy

For the integrand sqrt(d^2/4-(y-d/2)^2)/y, substitute u = y-d/2 and du = dy:

=  integral (2 sqrt(d^2/4-u^2))/(d+2 u) du
= 2 integral sqrt(d^2/4-u^2)/(d+2 u) du

For the integrand sqrt(d^2/4-u^2)/(d+2 u), (assuming all variables are positive) substitute u = 1/2 d sin(s) and du = 1/2 d cos(s) ds. Then sqrt(d^2/4-u^2) = sqrt(d^2/4-1/4 d^2 sin^2(s)) = 1/2 d cos(s) and s = sin^(-1)((2 u)/d):

= d^2/2 integral (cos^2(s))/(d sin(s)+d) ds

For the integrand (cos^2(s))/(d sin(s)+d), substitute p = tan(s/2) and dp = 1/2 sec^2(s/2) ds. Then transform the integrand using the substitutions sin(s) = (2 p)/(p^2+1), cos(s) = (1-p^2)/(p^2+1) and ds = (2 dp)/(p^2+1):

= d^2/2 integral (2 (1-p^2)^2)/((p^2+1)^3 ((2 d p)/(p^2+1)+d)) dp

Simplify the integrand (2 (1-p^2)^2)/((p^2+1)^3 ((2 d p)/(p^2+1)+d)) to get (2 (p-1)^2)/(d p^4+2 d p^2+d):

= d^2/2 integral (2 (p-1)^2)/(d p^4+2 d p^2+d) dp
= d^2  integral (p-1)^2/(d p^4+2 d p^2+d) dp
= d^2  integral (p-1)^2/(d (p^2+1)^2) dp
= d integral (p-1)^2/(p^2+1)^2 dp

For the integrand (p-1)^2/(p^2+1)^2, use partial fractions:

= d integral (1/(p^2+1)-(2 p)/(p^2+1)^2) dp
= d integral 1/(p^2+1) dp-2 d integral p/(p^2+1)^2 dp

For the integrand p/(p^2+1)^2, substitute w = p^2+1 and dw = 2 p dp:

= d integral 1/(p^2+1) dp-d integral 1/w^2 dw

The integral of 1/(p^2+1) is tan^(-1)(p):

= d tan^(-1)(p)-d integral 1/w^2 dw
= d tan^(-1)(p)+d/w+constant

Substitute back for w = p^2+1:

= (d ((p^2+1) tan^(-1)(p)+1))/(p^2+1)+C

Substitute back for p = tan(s/2):

= 1/2 d (cos(s)+2 tan^(-1)(tan(s/2))+1)+C

Substitute back for s = sin^(-1)((2 u)/d):

= 1/2 (sqrt(d^2-4 u^2)+2 d tan^(-1)((2 u)/(d (sqrt(1-(4 u^2)/d^2)+1)))+d)+C

Substitute back for u = y-d/2:

= d (-tan^(-1)((d-2 y)/(2 d sqrt((y (d-y))/d^2)+d)))+sqrt(y (d-y))+d/2+C

Factor the answer a different way:

= 1/2 (-2 d tan^(-1)((d-2 y)/(2 d sqrt((y (d-y))/d^2)+d))+2 sqrt(y (d-y))+d)+C

Which is equivalent for restricted y and d values to:

= y sqrt(d/y-1)-1/2 d tan^(-1)((sqrt(d/y-1) (d-2 y))/(2 (d-y)))+C

Syjytg 23:00, 11 September 2012 (EDT)