09-240/Classnotes for Tuesday October 20
Definition
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=IW and S∘T=IV
Theorem
If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W
Corollary
If dim V = n then
- Note: represents isomorphism
Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.
Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.
Ex: The game of 15. Players alternate drawing one card each. Goal: To have exactly three of your cards add to 15.
O: 7, 4, 6, 5 → Wins! X: 3, 8, 1, 2
This game is isomorphic to Tic Tac Toe!
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
Converts to:
O | 9 | X |
X | O | O |
X | X | O |
- S∘T=IV
- T∘S=IW
- T(OV)=OW
- T(x+y)=T(x)+T(y)
- T(cV)=cT(V)
- Likewise for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{S} }
- z=x+y ⇒ T(z)=T(x)+T(y)
- u=7v ⇒ T(u)=7T(v)
Proof of Theorem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftrightarrow } Assume dim V= dim W=n
- ∃ basis β= (U1...Un) of V
- α=(W1...Wn) of W
- by an earlier theorem, ∃ a l.t. T:V→W such that T(Ui)=Wi
(T(∑aiui)=∑aiT(ui)=∑aiui)
∃ a l.t. S:W→V s.t. S(Wi)=Ui
Claim
- S∘T=Iv
- T∘S=Iw
Proof
If u∈ unto U=∑aiui
- (S∘T)(u)=S(T(u))=S(T(∑aiui))
- =S(∑aiwi)=∑aiui=u
- ⇒S∘T=Iv...
- ⇒Assume T&S as above exist
- Choose a basis β= (U1...Un) of V
Claim
α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)
- is a basis of W, so dim W=n
Proof
α is lin. indep.
- T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
- Apply S to both sides:
- 0=∑aiui
- So ∃iai=0 as β is a basis
α Spans W
- Given any w∈W let u=S(W)
- As β is a basis find ais in F s.t. v=∑aiui
Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi
- ∴ I win!!! (QED)
- T T
- V → W ⇔ V' → W'
- rank T=rank T'
Fix t:V→Wa l.t.
Definition
- 1. N(T=ker(T)={u∈V:Tu=0w}
- 2. R(T)=im(T)={T(u):u∈V}
Prop/Def
- 1. N(T)'⊂V is a subspace of V-------nullity(T):=dim N(T)
- 2. R(T)⊂W is a subspace of W--------rank(T):=dim R(T)
Proof 1
- x,y ∈N(T)⇒T(x)=0, T(y)=0
- T(x+y)=T9x)+T(y)=0+0=0
- x+y∈N(T)
- ∴ I win!!! (QED)
Proof 2
- Let y∈R(T)⇒fix x s.t y=T(x),
- --------7y=7T(x)=T(7x)
- ----------⇒7y∈R(T)
- ∴ I win!!! (QED)
Examples
1.
- 0:V→W---------N(0)=V
- R(0)={0W}-----------nullity(0)=dim V
- --------------rank(0)=0
- dim V+0=dimV
2.
- IV:V→V
- N(I)={0}
- nullity=0
- R(I)=dim V
- 2'If T:V→W is an imorphism
- N(T)={0}
- nullity =0
- R(T)=W
- rank=dim W
- 0+dim V=dim V
3.
- D:P7(R)→P7(R)
- Df=f'
- N(D)={C⊃C°: C∈R}=P0(R)
- R(D)⊂P6(R)
- nullity(D)=1
- basis:(1x°)
- rank(D)=7
- 7+1=8
4.
- 3':D2:P7(R)
- D2f=f
- W(D2)={ax+b: a,b∈R}=P1(R)
- nullity(D2)=2
- R(D2)=P5(R)
- rank (D2)=6
- 6+2=8
Theorem
(rank-nullity Theorem, a.k.a. dimension Theorem)
- nullity(T)+rank(T)=dim V
- (for a l.t. T:V→W) when V is F.d.
Proof
(To be continued next day)