14-240/Tutorial-November4

From Drorbn
Revision as of 16:59, 29 November 2014 by Bug (talk | contribs) (→‎Boris)
Jump to navigationJump to search

Boris

Question 26 on Page 57 in Homework 5

Let and be a subspace of . Find .


First, let . Then we can decompose since there is a such that . From here, there are several approaches:


Approach 1: Use Isomorphisms


We show that is isomorphic to . Let be the standard ordered basis of and be a subset of . Then there is a unique linear transformation such that where . Show that is one-to-one and onto and conclude that .


Approach 2: Use the Rank-Nullity Theorem


Let be the standard ordered basis of . Define a relation by .


Approach 3: Find a Basis with the Decomposed Polynomial

Approach 4: Find a Basis without the Decomposed Polynomial