14-240/Tutorial-Sep30

From Drorbn
Revision as of 21:21, 4 October 2014 by Bug (talk | contribs) (→‎Problem)
Jump to navigationJump to search

Boris

Problem

Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:

(1) [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.

(2) [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].

Solution:

Let [math]\displaystyle{ S = \{ a, b \} }[/math] where [math]\displaystyle{ a }[/math] is the additive identity and [math]\displaystyle{ b }[/math] is the multiplicative identity and [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:

[math]\displaystyle{ + }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ a }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ b }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ \times }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ b }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ a }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]

We verify that [math]\displaystyle{ S }[/math] satisfies the (1) and (2).

Nikita