12-267/Tuesday September 11 Notes

From Drorbn
Revision as of 17:19, 4 October 2012 by Twine (talk | contribs) (Converted math to latex notation (verbatum))
Jump to navigationJump to search


Solving the complicated integral in the Brachistochroe integral

Complete the square in the integrand:

Substitute and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du = dy } :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \int 2 \sqrt{\frac{\frac{d^2}{4} - u^2}{d+2 u}} du }

Assuming all variables are positive, substitute and . Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{\frac{d^2}{4} - u^2} = \sqrt{\frac{d^2}{4} - \frac{1}{4} d^2 \sin^2{s}} = \frac{1}{2} d \cos{s}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \sin^{-1}{\frac{2u}{d}}} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{d^2}{2} \int \frac{\cos^2{s}}{d \sin{s} + d} ds}

For the integrand substitute and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dp = \frac{1}{2} \sec^2{\frac{s}{2}} ds} . Then transform the integrand using the substitutions , and :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{d^2}{2} \int 2 \frac{(1-p^2)^2}{(p^2 + 1)^3 (\frac{2 d p}{p^2 + 1} + d)} dp}

Simplify the integrand to get Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 (p-1)^2}{d p^4 + 2 d p^2 + d}} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = d^2 \int \frac{(p-1)^2}{d (p^2+1)^2} dp }

For the integrand use partial fractions:

For the integrand , substitute and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dw = 2 p dp} :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = d \int \frac{1}{p^2+1} dp - d \int \frac{1}{w^2} dw }

The integral of is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan^{-1}{p}} :

Substitute back for :

Substitute back for :

Substitute back for :

Substitute back for :

Factor the answer a different way:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{1}{2} (-2 d \tan^{-1}{\frac{d-2 y}{2 d \sqrt{\frac{y (d-y)}{d^2}}+d}}+2 \sqrt{y (d-y)}+d)+C}

Which is equivalent for restricted y and d values to:

Syjytg 23:00, 11 September 2012 (EDT)