11-1100/Homework Assignment 3
The information below is preliminary and cannot be trusted! (v)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due at class time on Tuesday, November 15, 2011.
Solve the following questions
Problem 1. (Selick) Show that any group of order 56 has a normal Sylow-[math]\displaystyle{ p }[/math] subgroup, for some prime [math]\displaystyle{ p }[/math] dividing 56.
Problem 2. (Qualifying exam, May 1997) Let [math]\displaystyle{ S_5 }[/math] act on [math]\displaystyle{ ({\mathbb Z/5})^5 }[/math] by permuting the factors, and let [math]\displaystyle{ G }[/math] be the semi-direct product of [math]\displaystyle{ S_5 }[/math] and [math]\displaystyle{ ({\mathbb Z/5})^5 }[/math].
- What is the order of [math]\displaystyle{ G }[/math]?
- How many Sylow-5 subgroups does [math]\displaystyle{ G }[/math] have? Write down one of them.
Problem 3. (Selick) Show that the group [math]\displaystyle{ Q }[/math] of unit quaternions ([math]\displaystyle{ \{\pm 1, \pm i, \pm j, \pm k\} }[/math], subject to [math]\displaystyle{ i^2=j^2=k^2=-1\in Z(Q) }[/math] and [math]\displaystyle{ ij=k }[/math]) is not a semi-direct product of two of its proper subgroups.
Problem 4. (Qualifying exam, September 2008) Let [math]\displaystyle{ G }[/math] be a finite group and [math]\displaystyle{ p }[/math] be a prime. Show that if [math]\displaystyle{ H }[/math] is a [math]\displaystyle{ p }[/math]-subgroup of [math]\displaystyle{ G }[/math], then [math]\displaystyle{ (N_G(H):H) }[/math] is congruent to [math]\displaystyle{ (G:H) }[/math] mod [math]\displaystyle{ p }[/math]. You may wish to study the action of [math]\displaystyle{ H }[/math] on [math]\displaystyle{ G/H }[/math] by multiplication on the left.
Problem 5. (easy)
- Prove that in any ring, [math]\displaystyle{ (-1)^2=1 }[/math].
- Prove that even in a ring without a unit, [math]\displaystyle{ (-a)^2=a^2 }[/math].
(Feel free to do the second part first and then to substitute [math]\displaystyle{ a=1 }[/math]).
Problem 6.
- (Qualifying exam, Ajavascript:insertTags('[math]\displaystyle{ ',' }[/math]','Insert%20formula%20here');pril 2009) Prove that a finite integral domain is a field.
- (Qualifying exam, September 2008) Prove that in a finite commutative ring, every prime ideal is maximal.
Problem 7. (Dummit and Foote) A ring [math]\displaystyle{ R }[/math] is called a Boolean ring if [math]\displaystyle{ a^2=a }[/math] for all [math]\displaystyle{ a\in R }[/math].
- Prove that every Boolean ring is commutative.
- Prove that the only Boolean ring that is also an integral domain is [math]\displaystyle{ {\mathbb Z}/2 }[/math].
Problem 8. (bonus) Let [math]\displaystyle{ S }[/math] be the ring of bounded sequences of real numbers with pointwise addition and multiplication, let [math]\displaystyle{ I }[/math] be the ideal made of all sequences that are equal to [math]\displaystyle{ 0 }[/math] except in at most finitely many places, and let [math]\displaystyle{ J }[/math] be a maximal ideal in [math]\displaystyle{ S }[/math] containing [math]\displaystyle{ I }[/math].
- Prove that [math]\displaystyle{ S/J\simeq{\mathbb R} }[/math].
- Denote by [math]\displaystyle{ \operatorname{Lim}_J }[/math] the projection of [math]\displaystyle{ S }[/math] to [math]\displaystyle{ S/J }[/math] composed with the identification of the latter with [math]\displaystyle{ {\mathbb R} }[/math], so that [math]\displaystyle{ \operatorname{Lim}_J:S\to{\mathbb R} }[/math]. Prove that for any scalar [math]\displaystyle{ c\in{\mathbb R} }[/math] and any bounded sequences [math]\displaystyle{ (a_n),(b_n)\in S }[/math], we have that [math]\displaystyle{ \operatorname{Lim}_J (ca_n)=c\operatorname{Lim}_J a_n }[/math], [math]\displaystyle{ \operatorname{Lim}_J(a_n+b_n)=\operatorname{Lim}_J a_n + \operatorname{Lim}_J b_n }[/math], and [math]\displaystyle{ \operatorname{Lim}_J(a_nb_n)=(\operatorname{Lim}_J a_n)(\operatorname{Lim}_J b_n) }[/math]. (Easy, no bonuses for this part).
- Prove that if [math]\displaystyle{ \lim a_n=\alpha }[/math] in the ordinary sense of limits of sequences, then [math]\displaystyle{ \operatorname{Lim}_Ja_n=\alpha }[/math].