14-240/Tutorial-December 2: Difference between revisions

From Drorbn
Jump to navigationJump to search
 
Line 45: Line 45:




:::::::<math>(-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\\A_j\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} =</math>
:::::::<math>det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\\A_j\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} = (-1)^{j - i}det\begin{pmatrix}...\\A_{i + 1}\\...\\A_j\\A_i\\...\end{pmatrix} =</math>






:::::::<math>(-1)^{j - i}det\begin{pmatrix}...\\A_{i + 1}\\...\\A_j\\A_i\\...\end{pmatrix} = (-1)^{j - i}(-1)^{j - i - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>
:::::::<math>(-1)^{j - i}(-1)^{j - i - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)^{2(j - i) - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>






:::::::<math>(-1)^{2(j - i) - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)^{- 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>
:::::::<math>(-1)^{- 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>





Latest revision as of 11:55, 9 December 2014

Boris

Theorem

Let be a matrix and be the matrix with two rows interchanged. Then . Boris decided to prove the following lemma first:

Lemma 1

Let be a matrix and be the matrix with two adjacent rows interchanged. Then .


All we need to show is that . Assume that is the matrix with rows of interchanged. Since the determinant of a matrix with two identical rows is , then:




.


Since the determinant is linear in each row, then we continue where we left off:




.


Then and . The proof of the lemma is complete.


For the proof of the theorem, assume that is the matrix with rows of interchanged and . By Lemma 1, we have the following:






.


Then the proof of the theorem is complete.

Nikita

Scanned Tutorial Notes by Boyang.wu

File:Tut.pdf