14-240/Tutorial-November11: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
|||
| Line 7: | Line 7: | ||
Recall: |
Recall: |
||
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>. Let <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is defined by <math>[v]_B = |
Let <math>V</math> be a finite dimensional vector space over a field <math>F</math>. Let <math>B = {v_1, v_2, v_3, ..., v_n}</math> be an ordered basis of <math>V</math> and <math>v \in V</math>. Then <math>v = \displaystyle\sum_{i=1}^{n} c_iv_i</math> where <math>c_i \in F</math>. Then the '''coordinate representation''' of <math>v</math> is defined by <math>[v]_B = </math>. |
||
Revision as of 18:26, 29 November 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Coordinate and Matrix Representation Problems
Recall:
Let [math]\displaystyle{ V }[/math] be a finite dimensional vector space over a field [math]\displaystyle{ F }[/math]. Let [math]\displaystyle{ B = {v_1, v_2, v_3, ..., v_n} }[/math] be an ordered basis of [math]\displaystyle{ V }[/math] and [math]\displaystyle{ v \in V }[/math]. Then [math]\displaystyle{ v = \displaystyle\sum_{i=1}^{n} c_iv_i }[/math] where [math]\displaystyle{ c_i \in F }[/math]. Then the coordinate representation of [math]\displaystyle{ v }[/math] is defined by [math]\displaystyle{ [v]_B = }[/math].