14-240/Tutorial-October14: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
Line 6: Line 6:




'''Bad Notation'''
(1) '''Bad Notation'''




Line 59: Line 59:
</math> where <math>F</math> is an arbitrary field.
</math> where <math>F</math> is an arbitrary field.



==Nikita==
(2) '''Algorithm vs. Proof'''

When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show:
:a) An algorithm for finding the solution

:b) A proof that a solution is correct

If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this:

Determine if the vector <math>(-2, 2, 2)</math> is a linear combination of the vectors <math>(- (1, 2, -1), (-3, -3, 3)</math> in <math>R^3</math>.

Show both (a) and (b) to be on the safe side.


====Problem 5h) of Homework 3 for all Fields====


For a field <math>F</math>, determine if the matrix
<math>
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
</math>
is in span
<math>S=\{
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
1 & 0 \\
-1 & 0 \\
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix},
\begin{pmatrix}
1 & 1 \\
0 & 0 \\
\end{pmatrix}
\}
</math>.


'''Proof:'''

We show that
<math>
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S) \iff char(F)=2</math>.

:We show that <math>char(F)=2 \implies
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S)
</math>.
::Assume that <math>char(F)=2</math>.

::Let <math>c_1=0, c_2=1, c_3=1</math>.

::Then <math>c_1, c_2, c_3 \in F</math>.

::Then <math>
c_1
\begin{pmatrix}
1 & 0 \\
-1 & 0 \\
\end{pmatrix}
+ c_2
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}
+ c_3 =
0
\begin{pmatrix}
1 & 0 \\
-1 & 0 \\
\end{pmatrix}
+ 1
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}
+ 1 =
\begin{pmatrix}
1 & 0 \\
-1 & 0 \\
\end{pmatrix}
+
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}</math>

:::::<math>
=
\begin{pmatrix}
1 & 2 \\
0 & 1 \\
\end{pmatrix}
</math>.

::Since <math>char(F)=2</math> and the entries of the matrix are from <math>F</math>, then <math>0=2</math>.

::Then <math>
\begin{pmatrix}
1 & 2 \\
0 & 1 \\
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S)
</math>.

::Then <math>
char(F)=2 \implies
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S)
</math>.

:We show that <math>char(F) \neq 2 \implies
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\notin span(S)
</math>.
::Assume to the contrary that <math>
char(F) \neq 2 \and
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S)
</math>.

::Then <math>\exists c_1, c_2, c_3 \in F,
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
=c_1
\begin{pmatrix}
1 & 0 \\
-1 & 0 \\
\end{pmatrix}
+c_2
\begin{pmatrix}
0 & 1 \\
0 & 1 \\
\end{pmatrix}
+c_3
\begin{pmatrix}
1 & 1 \\
0 & 0 \\
\end{pmatrix}
</math>.

::Then this system of linear equations has a solution:

:::<math>(11)c_1+c_3=1</math>

:::<math>(21)-c_1=0</math>

:::<math>(12)c_2+c_3=0</math>

:::<math>(22)c_2=1</math>.

::When solving the system, we see that it has no solution.

::This contradicts the assumption that it has a solution.

::Then <math>
char(F) \neq2 \implies
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\notin span(S)
</math>.

:Then <math>
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\in span(S) \iff char(F)=2</math>. ''Q.E.D.''


====A Field Problem====

====A Dimension Problem====

Revision as of 00:28, 15 October 2014

Boris

Elementary and (Not So Elementary) Errors in Homework

(1) Bad Notation


Let [math]\displaystyle{ M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} }[/math] be matrices.


We want to equate [math]\displaystyle{ span(M_1, M_2, M_3) }[/math] to the set of all symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrices. Here is the wrong way to write this:


[math]\displaystyle{ span(M_1, M_2, M_3) = \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} }[/math].


Firstly, [math]\displaystyle{ span(M_1, M_2, M_2) }[/math] is the set of all linear combinations of [math]\displaystyle{ M_1, M_2, M_3 }[/math]. To equate it to a single

symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrix makes no sense. Secondly, the elements [math]\displaystyle{ a, b, c, d }[/math] are undefined. What are they suppose to

represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those

issues:


[math]\displaystyle{ span(M_1, M_2, M_3) = \{ \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} :a, b, c \in F \} }[/math] where [math]\displaystyle{ F }[/math] is an arbitrary field.


(2) Algorithm vs. Proof

When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show:

a) An algorithm for finding the solution
b) A proof that a solution is correct

If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this:

Determine if the vector [math]\displaystyle{ (-2, 2, 2) }[/math] is a linear combination of the vectors [math]\displaystyle{ (- (1, 2, -1), (-3, -3, 3) }[/math] in [math]\displaystyle{ R^3 }[/math].

Show both (a) and (b) to be on the safe side.


Problem 5h) of Homework 3 for all Fields

For a field [math]\displaystyle{ F }[/math], determine if the matrix [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} }[/math] is in span [math]\displaystyle{ S=\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} \} }[/math].


Proof:

We show that [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math].

We show that [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Assume that [math]\displaystyle{ char(F)=2 }[/math].
Let [math]\displaystyle{ c_1=0, c_2=1, c_3=1 }[/math].
Then [math]\displaystyle{ c_1, c_2, c_3 \in F }[/math].
Then [math]\displaystyle{ c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} + c_3 = 0 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} + 1 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} }[/math]
[math]\displaystyle{ = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} }[/math].
Since [math]\displaystyle{ char(F)=2 }[/math] and the entries of the matrix are from [math]\displaystyle{ F }[/math], then [math]\displaystyle{ 0=2 }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
We show that [math]\displaystyle{ char(F) \neq 2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Assume to the contrary that [math]\displaystyle{ char(F) \neq 2 \and \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ \exists c_1, c_2, c_3 \in F, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} =c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} +c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} +c_3 \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} }[/math].
Then this system of linear equations has a solution:
[math]\displaystyle{ (11)c_1+c_3=1 }[/math]
[math]\displaystyle{ (21)-c_1=0 }[/math]
[math]\displaystyle{ (12)c_2+c_3=0 }[/math]
[math]\displaystyle{ (22)c_2=1 }[/math].
When solving the system, we see that it has no solution.
This contradicts the assumption that it has a solution.
Then [math]\displaystyle{ char(F) \neq2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math]. Q.E.D.


A Field Problem

A Dimension Problem