14-240/Tutorial-October7: Difference between revisions
| Line 7: | Line 7: | ||
Check out these proofs: |
Check out these proofs: |
||
=====Proof 1===== |
|||
| ⚫ | |||
| ⚫ | |||
<math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>. |
|||
:Assume that <math>W_1 \cup W_2</math> is a subspace. |
:Assume that <math>W_1 \cup W_2</math> is a subspace. |
||
Revision as of 23:58, 11 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Subtle Problems in Proofs
Check out these proofs:
Proof 1
Let [math]\displaystyle{ W_1 }[/math], [math]\displaystyle{ W_2 }[/math] be subspaces of a vector space [math]\displaystyle{ V }[/math]. We show that [math]\displaystyle{ W_1 \cup W_2 }[/math] is a subspace [math]\displaystyle{ \implies W_1 \subset W_2 \or W_2 \subset W_1 }[/math].
- Assume that [math]\displaystyle{ W_1 \cup W_2 }[/math] is a subspace.
- Let [math]\displaystyle{ x \in W_1, y \in W_2 }[/math].
- Then [math]\displaystyle{ x, y \in W_1 \cup W_2 }[/math] and [math]\displaystyle{ x + y \in W_1 \cup W_2 }[/math].
- Then [math]\displaystyle{ x + y \in W_1 \or x + y \in W_2 }[/math].
- Case 1: [math]\displaystyle{ x + y \in W_1 }[/math]:
- Since [math]\displaystyle{ x \in W_1 }[/math] and [math]\displaystyle{ W_1 }[/math] has additive inverses, then [math]\displaystyle{ (-x) \in W_1 }[/math].
- Then [math]\displaystyle{ (x+y)+(-x)=y \in W_1 }[/math].
- Case 2: [math]\displaystyle{ x + y \in W_2 }[/math]:
- Since [math]\displaystyle{ y \in W_2 }[/math] and [math]\displaystyle{ W_2 }[/math] has additive inverses, then [math]\displaystyle{ (-y) \in W_2 }[/math].
- Then [math]\displaystyle{ (x+y)+(-y)=x \in W_2 }[/math].
- Then [math]\displaystyle{ x \in W_2 \or y \in W_1 }[/math].
- Then [math]\displaystyle{ W_1 \subset W_2 \or W_2 \subset W_1 }[/math]. Q.E.D.
(2) Let [math]\displaystyle{ V=\{(a_1, a_2):a_1, a_2 \in R\} }[/math]. Then [math]\displaystyle{ \forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R }[/math], define
[math]\displaystyle{ (a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2) }[/math] and [math]\displaystyle{ c(a_1, a_2)=(ca_1, ca_2) }[/math]. We show that [math]\displaystyle{ V }[/math] is not a vector
space over [math]\displaystyle{ R }[/math].
- We show that [math]\displaystyle{ V }[/math] is not commutative.
- Let [math]\displaystyle{ (a_1, a_2) = (0, 0) }[/math].
- Then [math]\displaystyle{ (0, 0) + (b_1, b_2) = (2b_1, 3b_2) \neq (b_1, b_2) }[/math].
- Then [math]\displaystyle{ V }[/math] is not commutative.
- Then [math]\displaystyle{ V }[/math] is not a vector space. Q.E.D.
Do you spot the subtle error in each?