|
|
Line 2: |
Line 2: |
|
|
|
|
|
==Boris== |
|
==Boris== |
|
|
|
|
|
====Subtle Problems in Proofs==== |
|
|
|
|
|
Check out these proofs: |
|
|
|
|
|
(1) Let <math>W_1</math>, <math>W_2</math> be subspaces of a vector space <math>V</math>. We show that <math>W_1 \cup W_2</math> is a subspace <math>\implies W_1 \subset W_2 \or W_2 \subset W_1</math>. |
|
|
:Assume that <math>W_1 \cup W_2</math> is a subspace. |
|
|
:Let <math>x \in W_1, y \in W_2</math>. |
|
|
:Then <math>x, y \in W_1 \cup W_2</math> and <math>x + y \in W_1 \cup W_2</math>. |
|
|
:Then <math>x + y \in W_1 \or x + y \in W_2</math>. |
|
|
:Case 1: <math>x + y \in W_1</math>: |
|
|
::Since <math>x \in W_1</math> and <math>W_1</math> has additive inverses, then <math>(-x) \in W_1</math>. |
|
|
::Then <math>(x+y)+(-x)=y \in W_1</math>. |
|
|
:Case 2: <math>x + y \in W_2</math>: |
|
|
::Since <math>y \in W_2</math> and <math>W_2</math> has additive inverses, then <math>(-y) \in W_2</math>. |
|
|
::Then <math>(x+y)+(-y)=x \in W_2</math>. |
|
|
:Then <math>x \in W_2 \or y \in W_1</math>. |
|
|
:Then <math>W_1 \subset W_2 \or W_2 \subset W_1</math>. ''Q.E.D.'' |
|
|
|
|
|
|
|
|
(2) Let <math>V=\{(a_1, a_2):a_1, a_2 \in R\}</math>. Then <math>\forall (a_1, a_2), (b_1, b_2) \in V, \forall c \in R</math>, define <math>(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)</math> and <math>c(a_1, a_2)=(ca_1, ca_2)</math>. We show that <math>V</math> is not a vector space over <math>R</math>. |
|
|
|
|
|
==Nikita== |
|
==Nikita== |
Revision as of 23:35, 11 October 2014
Welcome to Math 240! (additions to this web site no longer count towards good deed points)
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 8
|
About This Class, What is this class about? (PDF, HTML), Monday, Wednesday
|
2
|
Sep 15
|
HW1, Monday, Wednesday, TheComplexField.pdf,HW1_solutions.pdf
|
3
|
Sep 22
|
HW2, Class Photo, Monday, Wednesday, HW2_solutions.pdf
|
4
|
Sep 29
|
HW3, Wednesday, Tutorial, HW3_solutions.pdf
|
5
|
Oct 6
|
HW4, Monday, Wednesday, Tutorial, HW4_solutions.pdf
|
6
|
Oct 13
|
No Monday class (Thanksgiving), Wednesday, Tutorial
|
7
|
Oct 20
|
HW5, Term Test at tutorials on Tuesday, Wednesday
|
8
|
Oct 27
|
HW6, Monday, Why LinAlg?, Wednesday, Tutorial
|
9
|
Nov 3
|
Monday is the last day to drop this class, HW7, Monday, Wednesday, Tutorial
|
10
|
Nov 10
|
HW8, Monday, Tutorial
|
11
|
Nov 17
|
Monday-Tuesday is UofT November break
|
12
|
Nov 24
|
HW9
|
13
|
Dec 1
|
Wednesday is a "makeup Monday"! End-of-Course Schedule, Tutorial
|
F
|
Dec 8
|
The Final Exam
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
Boris
Subtle Problems in Proofs
Check out these proofs:
(1) Let , be subspaces of a vector space . We show that is a subspace .
- Assume that is a subspace.
- Let .
- Then and .
- Then .
- Case 1: :
- Since and has additive inverses, then .
- Then .
- Case 2: :
- Since and has additive inverses, then .
- Then .
- Then .
- Then . Q.E.D.
(2) Let . Then , define and . We show that is not a vector space over .
Nikita