14-240/Tutorial-Sep30: Difference between revisions
| Line 46: | Line 46: | ||
We verify that <math>S</math> satisfies (1). By the addition and multiplication |
We verify that <math>S</math> satisfies (1). By the addition and multiplication tables, then <math>S</math> satisfies closure, commutativity, associativity and existence of identities and inverses. Since <math>a(b + b) = a(a) = b \neq a = a + a = ab + ab</math>, then <math>S</math> does not satisfy distributivity. Then <math>S</math> satisfies (1). |
||
Revision as of 22:29, 4 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Problem
Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:
(1) [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
(2) [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].
Solution:
Let [math]\displaystyle{ S = \{ a, b \} }[/math] where [math]\displaystyle{ a }[/math] is the additive identity and [math]\displaystyle{ b }[/math] is the multiplicative identity and [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:
| [math]\displaystyle{ + }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
|---|---|---|
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ \times }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
|---|---|---|
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
We verify that [math]\displaystyle{ S }[/math] satisfies (1). By the addition and multiplication tables, then [math]\displaystyle{ S }[/math] satisfies closure, commutativity, associativity and existence of identities and inverses. Since [math]\displaystyle{ a(b + b) = a(a) = b \neq a = a + a = ab + ab }[/math], then [math]\displaystyle{ S }[/math] does not satisfy distributivity. Then [math]\displaystyle{ S }[/math] satisfies (1).
We verify that [math]\displaystyle{ S }[/math] satisfies (2). Since [math]\displaystyle{ aa = b \neq = a }[/math], then [math]\displaystyle{ S }[/math] satisfies (2).