14-240/Tutorial-Sep30: Difference between revisions
m (Drorbn moved page 14-240/Tutorial to 14-240/Tutorial-Sep30) |
|||
| Line 45: | Line 45: | ||
|} |
|} |
||
We verify that <math>S</math> satisfies (1) and (2). By the addition and multiplication tables, <math>S</math> is closed under addition and scalar multiplication. Since <math>a + b = b + a = b</math> and <math>ab = ba = a</math>, then <math>S</math> is commutative. |
We verify that <math>S</math> satisfies (1) and (2). By the addition and multiplication tables, <math>S</math> is closed under addition and scalar multiplication. Since <math>a + b = b + a = b</math> and <math>ab = ba = a</math>, then <math>S</math> is commutative. By extension, <math>S</math> is also associative. |
||
==Nikita== |
==Nikita== |
||
Revision as of 22:09, 4 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Problem
Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:
(1) [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
(2) [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].
Solution:
Let [math]\displaystyle{ S = \{ a, b \} }[/math] where [math]\displaystyle{ a }[/math] is the additive identity and [math]\displaystyle{ b }[/math] is the multiplicative identity and [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:
| [math]\displaystyle{ + }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
|---|---|---|
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ \times }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
|---|---|---|
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
We verify that [math]\displaystyle{ S }[/math] satisfies (1) and (2). By the addition and multiplication tables, [math]\displaystyle{ S }[/math] is closed under addition and scalar multiplication. Since [math]\displaystyle{ a + b = b + a = b }[/math] and [math]\displaystyle{ ab = ba = a }[/math], then [math]\displaystyle{ S }[/math] is commutative. By extension, [math]\displaystyle{ S }[/math] is also associative.