14-240/Tutorial-Sep30: Difference between revisions
From Drorbn
Jump to navigationJump to search
| Line 21: | Line 21: | ||
|- |
|- |
||
! <math>a</math> |
! <math>a</math> |
||
| <math> |
| <math>a</math> |
||
| <math>b</math> |
| <math>b</math> |
||
|- |
|- |
||
| Line 32: | Line 32: | ||
|- |
|- |
||
! <math>\times</math> |
! <math>\times</math> |
||
| ⚫ | |||
! <math>b</math> |
! <math>b</math> |
||
| ⚫ | |||
! <math>a</math> |
! <math>a</math> |
||
| ⚫ | |||
| ⚫ | |||
|- |
|- |
||
! <math>b</math> |
! <math>b</math> |
||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| <math>a</math> |
| <math>a</math> |
||
| <math>b</math> |
| <math>b</math> |
||
Revision as of 20:52, 4 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Problem
Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:
- [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
- [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].
Solution:
Let [math]\displaystyle{ a \in S }[/math] be the additive identity and [math]\displaystyle{ b \in S }[/math] be the multiplicative identity where [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:
| [math]\displaystyle{ + }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
|---|---|---|
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ \times }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
|---|---|---|
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |