14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
(more typesetting. Do we have the proof environment here?)
No edit summary
Line 1: Line 1:
{{14-240/Navigation}}
Definition:
Definition:
Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.


Theorem:
Theorem:


8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
* 8. <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>;
proof of 8: By F3 , <math>a \times 0 = a \times (0 + 0)</math>;
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;

Revision as of 08:08, 17 September 2014

Definition:

  • Subtraction: if .
  • Division: if .

Theorem:

  • 8. , .
                   proof of 8: By F3 , ;
                               By F5 , ;
                               By F3 , ;
                               By Thm P1,.
       
        9.  s.t. ;
            s.t. .
                   proof of 9: By F3 , .
       
       10. .
     
       11. .
      
       12. .
                   proof of 12: <= : By P8 , if  , then ;
                                     By P8 , if  , then .
                                => : Assume  , if a = 0 we are done;
                                     Otherwise , by P8 ,  and we have ;  
                                                 by cancellation (P2) , .
       

.

        proof: By F5 , 
                                               
                                               

Theorem :

          s.t.
              1. ;
              2. ;
              3. .
        
         
        ......                                                                          
     
        In F2 ,