12-267/Homework Assignment 5: Difference between revisions
No edit summary |
Dongwoo.kang (talk | contribs) No edit summary |
||
| Line 38: | Line 38: | ||
[http://imgur.com/a/txF9Z#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
[http://imgur.com/a/txF9Z#0 Solutions] [[User:Vsbdthrsh|Vsbdthrsh]] |
||
Solutions to HW5: [[User:Dongwoo.kang|Dongwoo.kang]] |
|||
<gallery> |
|||
Image:12-267(HW5-1).jpg|page 1 |
|||
Image:12-267(HW5-2).jpg|page 2 |
|||
Image:12-267(HW5-3).jpg|page 3 |
|||
Image:12-267(HW5-4.jpg|page 4 |
|||
Image:12-267(HW5-5.jpg|page 5 |
|||
Image:12-267(HW5-6.jpg|page 6 |
|||
Image:12-267(HW5-7.jpg|page 7 |
|||
Image:12-267(HW5-8.jpg|page 8 |
|||
Image:12-267(HW5-9.jpg|page 9 |
|||
Image:12-267(HW5-10.jpg|page 10 |
|||
Image:12-267(HW5-11.jpg|page 11 |
|||
Image:12-267(HW5-12.jpg|page 12 |
|||
Image:12-267(HW5-13.jpg|page 13 |
|||
</gallery> |
|||
Latest revision as of 21:05, 13 December 2012
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
This assignment is due in class on Friday November 2. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if your readers have a hard time deciphering your work they will give up and assume it is wrong.
Task 1. Consider the following systems of equations:
[math]\displaystyle{ A:\begin{cases} \dot{x}=x-2y & x(0)=3\\ \dot{y}=4y-2x & y(0)=1\\ \end{cases} }[/math]
[math]\displaystyle{ B:\begin{cases} \dot{x}=x-5y & x(0)=3\\ \dot{y}=2x-5y & y(0)=1 \end{cases} }[/math]
[math]\displaystyle{ C:\begin{cases} \dot{x}=y & x(0)=1 \\ \dot{y}=z & y(0)=2 \\ \dot{z}=-6x-11y-6z & z(0)=-1 \end{cases} }[/math]
- Write each one in a matrix form.
- Find the eigenvalues and eigenvectors of the resulting matrices.
- Diagonalize these matrices.
- Compute [math]\displaystyle{ e^{tA} }[/math] for each of those matrices.
- Solve these equations.
Task 2.
- Prove that if two matrices [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] satisfy [math]\displaystyle{ AB=BA }[/math], then [math]\displaystyle{ e^{A+B}=e^Ae^B }[/math].
- Find an example for two matrices [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] for which [math]\displaystyle{ e^{A+B}\neq e^Ae^B }[/math].
Task 3. Let [math]\displaystyle{ D }[/math] be the differential operator [math]\displaystyle{ \frac{d}{dx} }[/math], and let [math]\displaystyle{ f }[/math] be a function of the variable [math]\displaystyle{ x }[/math] whose Taylor series is convergent everywhere. Write a simple formula for [math]\displaystyle{ (e^Df)(x) }[/math].
(Here, of course, [math]\displaystyle{ e^D:=\sum_{k=0}^\infty \frac{D^k}{k!} }[/math]).
| Dror's notes above / Student's notes below |
Solutions to HW5: Dongwoo.kang