10-1100/Homework Assignment 4: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
'''Problem 1.''' Prove that a ring <math>R</math> is a PID iff it is a UFD in which <math>\gcd(a,b)\in\langle a, b\rangle</math> for every non-zero <math>a,b\in R</math>. |
'''Problem 1.''' Prove that a ring <math>R</math> is a PID iff it is a UFD in which <math>\gcd(a,b)\in\langle a, b\rangle</math> for every non-zero <math>a,b\in R</math>. |
||
'''Problem 2.''' (Selick) In a ring <math>R</math>, and element <math>x</math> is called "nilpotent" if for some positive <math>n</math>, <math>x^n=0</math>. Let <math>\eta(R)</math> be the set of all nilpotent elements of <math>R</math>. |
|||
# Prove that if <math>R</math> is commutative then <math>\eta(R)</math> is an ideal. |
|||
# Give an example of a non-commutative ring <math>R</math> in which <math>\eta(R)</math> is not an ideal. |
|||
'''Problem 3.''' (comprehensive exam, 2009) Let <math>A</math> be a commutative ring. Show that a polynomial <math>f\in A[x]</math> is invertible in <math>A[x]</math> iff its constant term is invertible in <math>A</math> and the rest of its coefficients are nilpotent. |
|||
'''Problem 4.''' (Lang) Show that the ring <math>{\mathbb Z}[i]=\{a+ib\colon a,b\in{\mathbb Z}\}\subset{\mathbb C}</math> is a PID and hence a UFD. What are the units of that ring? |
|||
'''Problem 5.''' (Dummit and Foote) In <math>{\mathbb Z}[i]</math>, find the greatest common divisor of <math>85</math> and <math>1+13i</math>, and express it as a linear combination of these two elements. |
|||
'''Problem 6.''' Show that the quotient ring <math>{\mathbb Q}[x,y]/\langle x^2+y^2-1\rangle</math> is not a UFD. |
|||
'''Problem 7.''' (Dummit and Foote) Prove that the quotient of a PID by a prime ideal is again a PID. |
Revision as of 21:28, 16 November 2010
|
The information below is preliminary and cannot be trusted! (v)
This assignment is due at class time on Tuesday, November 30, 2010.
Solve the following questions
Problem 1. Prove that a ring is a PID iff it is a UFD in which Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gcd(a,b)\in\langle a, b\rangle} for every non-zero .
Problem 2. (Selick) In a ring , and element is called "nilpotent" if for some positive , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^n=0} . Let be the set of all nilpotent elements of .
- Prove that if is commutative then is an ideal.
- Give an example of a non-commutative ring in which is not an ideal.
Problem 3. (comprehensive exam, 2009) Let be a commutative ring. Show that a polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\in A[x]} is invertible in iff its constant term is invertible in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} and the rest of its coefficients are nilpotent.
Problem 4. (Lang) Show that the ring is a PID and hence a UFD. What are the units of that ring?
Problem 5. (Dummit and Foote) In , find the greatest common divisor of and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1+13i} , and express it as a linear combination of these two elements.
Problem 6. Show that the quotient ring is not a UFD.
Problem 7. (Dummit and Foote) Prove that the quotient of a PID by a prime ideal is again a PID.