15-344/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 26: Line 26:


'''DEFINITION 5''' '''Independent''' Let <math>G = (V,E)</math> be a graph. A subset <math>I\subset{V}</math> is called independent if whenever <math>a,b\in{I}</math>, then <math>(ab)\notin{E}</math>.
'''DEFINITION 5''' '''Independent''' Let <math>G = (V,E)</math> be a graph. A subset <math>I\subset{V}</math> is called independent if whenever <math>a,b\in{I}</math>, then <math>(ab)\notin{E}</math>.



'''THEOREM 1''' Edge covers are complementary to independent sets. In other words, <math>C\subset{V}</math> is an edge cover if and only if
'''THEOREM 1''' Edge covers are complementary to independent sets. In other words, <math>C\subset{V}</math> is an edge cover if and only if

Revision as of 21:42, 15 September 2015

We mostly went over Day One Handout today.

Dror's notes above / Students' notes below


Lecture Note for September 15

DEFINITION 1 Graph A graph [math]\displaystyle{ G = (V,E) }[/math] is a set [math]\displaystyle{ V = \{a,b,...\} }[/math] (usually finite, "vertices") along with a set [math]\displaystyle{ E = \{(ab),(bc),(bd),...\} }[/math] ("edges") of unordered pairs of distinct elements of [math]\displaystyle{ V }[/math].


DEFINITION 2 Incident If an edge [math]\displaystyle{ e = (ab)\in{E} }[/math], we say that [math]\displaystyle{ e }[/math] is incident to [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math].


DEFINITION 3 N-valent In a graph [math]\displaystyle{ G = (V,E) }[/math], a vertex [math]\displaystyle{ u \in{V} }[/math] is called bivalent if it is incident to precisely two edges and n-valent if incident to precisely n edges, where [math]\displaystyle{ n = 0,1,2,.. }[/math].


DEFINITION 4 Edge Cover An edge cover for graph [math]\displaystyle{ G = (V,E) }[/math] is a subset [math]\displaystyle{ C\subset{V} }[/math] such that every edge of [math]\displaystyle{ G }[/math] incident to at least one vertex in [math]\displaystyle{ C }[/math].


DEFINITION 5 Independent Let [math]\displaystyle{ G = (V,E) }[/math] be a graph. A subset [math]\displaystyle{ I\subset{V} }[/math] is called independent if whenever [math]\displaystyle{ a,b\in{I} }[/math], then [math]\displaystyle{ (ab)\notin{E} }[/math].


THEOREM 1 Edge covers are complementary to independent sets. In other words, [math]\displaystyle{ C\subset{V} }[/math] is an edge cover if and only if the complementary subset [math]\displaystyle{ V-C }[/math] is an independent set.


Proof [math]\displaystyle{ (\rightarrow) }[/math] Assume [math]\displaystyle{ C }[/math] is an edge cover. I assert that [math]\displaystyle{ I = V-C }[/math] is independent. Indeed, if [math]\displaystyle{ e=(ab)\in{E} }[/math], then since [math]\displaystyle{ C }[/math] is an edge cover, either [math]\displaystyle{ a\in{C} \implies a\notin{I} }[/math] or [math]\displaystyle{ b\in{C} \implies b\notin{I} }[/math], which implies [math]\displaystyle{ a,b }[/math] are not connected.

[math]\displaystyle{ (\leftarrow) }[/math] Assume [math]\displaystyle{ I=V-C }[/math] is independent. Pick any edge [math]\displaystyle{ e = (ab)\in{E} }[/math]. As [math]\displaystyle{ I }[/math] is independent, [math]\displaystyle{ (ab) }[/math] does not connect [math]\displaystyle{ a,b }[/math]. Hence, either [math]\displaystyle{ a\notin{I} \implies a\in{C} }[/math] or [math]\displaystyle{ b\notin{I} \implies b\in{C} }[/math], which implies [math]\displaystyle{ e }[/math] is incident to an element of [math]\displaystyle{ C }[/math]. QED