14-240/Tutorial-December 2: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 12: Line 12:


All we need to show is that <math>det(A) + det(B) = 0</math>. Assume that <math>B</math> is the matrix <math>A</math> with row <math>i</math> of <math>A</math> interchanged with row <math>i + 1</math> of <math>A</math>. Since the determinant of a matrix with two identical rows is <math>0</math>, then:
All we need to show is that <math>det(A) + det(B) = 0</math>. Assume that <math>B</math> is the matrix <math>A</math> with row <math>i</math> of <math>A</math> interchanged with row <math>i + 1</math> of <math>A</math>. Since the determinant of a matrix with two identical rows is <math>0</math>, then:


:::::::<math>det(A) + det(B) =</math>




Line 19: Line 22:




Since the determinant is linear in each row, then:
Since the determinant is linear in each row, then we continue where we left off:


:::::::<math>det(A) + det(B) =</math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = </math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0</math>.


<math>det(A) + det(B) = det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = </math>


Then <math>det(A) + det(B) = 0</math> and <math>det(A) = -det(B)</math>.
<math>det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0</math>.


==Nikita==
==Nikita==

Revision as of 15:13, 7 December 2014

Boris

Theorem

Let [math]\displaystyle{ A }[/math] be a [math]\displaystyle{ n \times n }[/math] matrix and [math]\displaystyle{ B }[/math] be the matrix [math]\displaystyle{ A }[/math] with two rows interchanged. Then [math]\displaystyle{ det(A) = -det(B) }[/math]. Boris decided to prove the following lemma first:

Lemma 1

Let [math]\displaystyle{ A }[/math] be a [math]\displaystyle{ n \times n }[/math] matrix and [math]\displaystyle{ B }[/math] be the matrix [math]\displaystyle{ A }[/math] with two adjacent rows interchanged. Then [math]\displaystyle{ det(A) = -det(B) }[/math].

All we need to show is that [math]\displaystyle{ det(A) + det(B) = 0 }[/math]. Assume that [math]\displaystyle{ B }[/math] is the matrix [math]\displaystyle{ A }[/math] with row [math]\displaystyle{ i }[/math] of [math]\displaystyle{ A }[/math] interchanged with row [math]\displaystyle{ i + 1 }[/math] of [math]\displaystyle{ A }[/math]. Since the determinant of a matrix with two identical rows is [math]\displaystyle{ 0 }[/math], then:


[math]\displaystyle{ det(A) + det(B) = }[/math]


[math]\displaystyle{ det(A) + det(B) = det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = }[/math]
[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} }[/math].


Since the determinant is linear in each row, then we continue where we left off:


[math]\displaystyle{ det(A) + det(B) = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = }[/math]
[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0 }[/math].


Then [math]\displaystyle{ det(A) + det(B) = 0 }[/math] and [math]\displaystyle{ det(A) = -det(B) }[/math].

Nikita