14-240/Tutorial-October28: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
Line 3: Line 3:
==Boris==
==Boris==


====Avoid the Einstellung Effect====
====Be Efficient====


By this point in the course, we become good at solving systems of linear equations. However, we should not use this same old problem-solving strategy over and over if a more efficient one exists. Consider the following problems:
By this point in the course, we become good at solving systems of linear equations. However, we should not use this same old problem-solving strategy over and over if a more efficient one exists. Consider the following problems:

Latest revision as of 10:37, 29 November 2014

Boris

Be Efficient

By this point in the course, we become good at solving systems of linear equations. However, we should not use this same old problem-solving strategy over and over if a more efficient one exists. Consider the following problems:


Q1: Determine if is linearly independent in .

We can solve this linear equation to find the answer:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1(1, 4, -6) + c_2(1, 5, 8) + c_3 (2, 1, 1) + c_4(0, 1, 0) = (0, 0, 0)} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i \in R} .


Yet there is a less time-consuming approach that relies on two observations:

(1) The dimension of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^3} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} so the size of a basis is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} .
(2) No linearly independent set can have more vectors than a generating set (by the Replacement Theorem).

Since a basis is a generating set and the size of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} , then the Replacement Theorem tells us that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} cannot be linearly independent. Hence, the problem can be solved without solving any linear equations.


Q2: Determine if the polynomials generate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_3(R)} .

Once again, we can solve a linear equation but we do not have to. Observe:

(1) The dimension Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_3(R)} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} so the size of a basis is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} .
(2) No generating set can have fewer vectors than a basis (by a Corollary to the Replacement Theorem).

Since there are only Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} polynomials, then the Corollary tells us that it cannot generate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_3(R)} . Once again, we used a more efficient strategy.


Extending a Linearly Independent Set to a Basis

Boris's tip (for concrete sets and vector spaces only):


If a problem requires us to extend a linearly independent set to a basis, then the easiest approach is to add vectors from the standard ordered basis. Here is an example:


Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \{(-3, -6, 0), (0, 7, 0)\}} be a linearly independent subset of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^3} . To extend to a basis, add vectors from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}} . The only question is which vector(s) should we add?


We see that both vectors in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} have a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} as the third component so a safe choice is to add Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (0, 0, 1)} . Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^3} has a dimension of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{(-3, -6, 0), (0, 7, 0), (0, 0, 1)\}} is a basis of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle R^3} .

Nikita