14-240/Tutorial-October14: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 46: Line 46:
<math>2 \times 2</math> matrix makes no sense. Secondly, the elements <math>a, b, c, d</math> are undefined. What are they suppose to
<math>2 \times 2</math> matrix makes no sense. Secondly, the elements <math>a, b, c, d</math> are undefined. What are they suppose to


represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those
represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases


issues:
those issues:





Revision as of 21:00, 29 October 2014

Boris

Elementary and (Not So Elementary) Errors in Homework

(1) Bad Notation


Consider these three matrices:

[math]\displaystyle{ M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} }[/math]


We want to equate [math]\displaystyle{ span(M_1, M_2, M_3) }[/math] to the set of all symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrices. Here is the wrong way to write this:


[math]\displaystyle{ span(M_1, M_2, M_3) = \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} }[/math].


Firstly, [math]\displaystyle{ span(M_1, M_2, M_2) }[/math] is the set of all linear combinations of [math]\displaystyle{ M_1, M_2, M_3 }[/math]. To equate it to a single

symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrix makes no sense. Secondly, the elements [math]\displaystyle{ a, b, c, d }[/math] are undefined. What are they suppose to

represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases

those issues:


[math]\displaystyle{ span(M_1, M_2, M_3) = \{ \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} :a, b, c \in F \} }[/math] where [math]\displaystyle{ F }[/math] is an arbitrary field.


(2) Algorithm vs. Proof (Boris's Section Only)

When solving a problem that requires a solution to a linear equation, it is not always obvious which of the following you

should show:

a) An algorithm for finding the solution
b) A proof that a solution is correct

If the problem asks to solve a linear equation, then just show (a). Otherwise, consider problems such as this:


Determine if the vector [math]\displaystyle{ (-2, 2, 2) }[/math] is a linear combination of the vectors [math]\displaystyle{ (- (1, 2, -1), (-3, -3, 3) }[/math] in [math]\displaystyle{ R^3 }[/math].


Show both (a) and (b) to be on the safe side.

Problem 5h) in Homework 3 for all Fields

For an arbitrary field [math]\displaystyle{ F }[/math], determine if the matrix [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} }[/math] is in span [math]\displaystyle{ S=\{ \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} \} }[/math].


Proof:

We show that [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math].

We show that [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Assume that [math]\displaystyle{ char(F)=2 }[/math].
Let [math]\displaystyle{ c_1=0, c_2=1, c_3=1 }[/math].
Then [math]\displaystyle{ c_1, c_2, c_3 \in F }[/math].
Then [math]\displaystyle{ c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} + c_3 \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} }[/math].
Since [math]\displaystyle{ char(F)=2 }[/math] and the entries of the matrix are from [math]\displaystyle{ F }[/math], then [math]\displaystyle{ 0=2 }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
We show that [math]\displaystyle{ char(F) \neq 2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Assume to the contrary that [math]\displaystyle{ char(F) \neq 2 \and \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ \exists c_1, c_2, c_3 \in F, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} =c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} +c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} +c_3 \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} }[/math].
Then this system of linear equations has a solution:
[math]\displaystyle{ (11)c_1+c_3=1 }[/math]
[math]\displaystyle{ (21)-c_1=0 }[/math]
[math]\displaystyle{ (12)c_2+c_3=0 }[/math]
[math]\displaystyle{ (22)c_2=1 }[/math].
When solving this system, we see that it has no solution.
This contradicts the assumption that it has a solution.
Then [math]\displaystyle{ char(F) \neq2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math]. Q.E.D.


A Field Problem

Find the solution to [math]\displaystyle{ x^2 = -2 }[/math] in [math]\displaystyle{ Z_{11} }[/math].

Note that a polynomial of [math]\displaystyle{ n }[/math] degree has at most [math]\displaystyle{ n }[/math] solutions.


Algorithm:

We find the solution to [math]\displaystyle{ x^2 = -2 }[/math] in [math]\displaystyle{ Z_{11} }[/math].

Since in [math]\displaystyle{ Z_{11}, -2 = 9 }[/math], then [math]\displaystyle{ x^2 = 9 }[/math].
Since [math]\displaystyle{ -9 }[/math] is additive inverse of [math]\displaystyle{ 9 }[/math], then [math]\displaystyle{ x^2 - 9 = 9 - 9 = 0 }[/math].
By the result that we proved in Question 2 of Homework 1, then [math]\displaystyle{ (x^2 - 9) = (x - 3)(x + 3) = 0 }[/math].
Then [math]\displaystyle{ x = \pm 3 }[/math] are the solutions.


A Dimension Problem

Let [math]\displaystyle{ W_1, W_2 }[/math] be subspaces of a finite dimensional vector space [math]\displaystyle{ V }[/math] over a field [math]\displaystyle{ F }[/math] where [math]\displaystyle{ W_1 \cap W_2 = \{0\} }[/math]. Then

[math]\displaystyle{ dim(span(W_1 \cup W_2)) = dim(W_1) + dim(W_2) }[/math].


Proof:

We show that [math]\displaystyle{ dim(span(W_1 \cup W_2)) = dim(W_1) + dim(W_2) }[/math].

Since [math]\displaystyle{ V }[/math] is finite dimensional, then [math]\displaystyle{ W_1, W_2 }[/math] are finite dimensional.
Then we can let [math]\displaystyle{ B_1 = \{u_1, u_2, u_3, ..., u_m\} }[/math] be a basis of [math]\displaystyle{ W_1 }[/math] and [math]\displaystyle{ B_2 = \{v_1, v_2, v_3, ..., v_n\} }[/math] be a basis of [math]\displaystyle{ W_2 }[/math].
We show that [math]\displaystyle{ B_1 \cup B_2 }[/math] is a basis of [math]\displaystyle{ span(W_1 \cup W_2) }[/math].
We show that [math]\displaystyle{ span(B_1 \cup B_2) = span(W_1 \cup W_2) }[/math].
We show that [math]\displaystyle{ span(B_1 \cup B_2) \subset span(W_1 \cup W_2) }[/math].
Since [math]\displaystyle{ (B_1 \cup B_2) \subset (W_1 \cup W_2) }[/math], then [math]\displaystyle{ span(B_1 \cup B_2) \subset span(W_1 \cup W_2) }[/math].
We show that [math]\displaystyle{ span(W_1 \cup W_2) \subset span(B_1 \cup B_2) }[/math].
Since [math]\displaystyle{ B_1 \subset (B_1 \cup B_2) }[/math], then [math]\displaystyle{ span(B_1) = W_1 \subset span(B_1 \cup B_2) }[/math].
Since [math]\displaystyle{ B_2 \subset (B_1 \cup B_2) }[/math], then [math]\displaystyle{ span(B_2) = W_2 \subset span(B_1 \cup B_2) }[/math].
Then [math]\displaystyle{ (W_1 \cup W_2) \subset span(B_1 \cup B_2) }[/math].
Then [math]\displaystyle{ span(B_1 \cup B_2) = span(W_1 \cup W_2) }[/math].
We show that [math]\displaystyle{ B_1 \cup B_2 }[/math] is linearly independent.
Let [math]\displaystyle{ \displaystyle\sum_{i=1}^{m} b_iu_i + \displaystyle\sum_{j=1}^{n} c_jv_j = 0 }[/math] where [math]\displaystyle{ b_i, c_j \in F }[/math].
Then [math]\displaystyle{ \displaystyle\sum_{i=1}^{m} b_iu_i = \displaystyle\sum_{j=1}^{n} (-c_j)v_j }[/math].
Since [math]\displaystyle{ W_1 \cap W_2 = \{ 0 \} }[/math], then [math]\displaystyle{ \displaystyle\sum_{i=1}^{m} b_iu_i = \displaystyle\sum_{j=1}^{n} (-c_j)v_j = 0 }[/math].
Since [math]\displaystyle{ B_1, B_2 }[/math] are linearly independent, then [math]\displaystyle{ b_i = (-c_j) = 0 }[/math].
For [math]\displaystyle{ \displaystyle\sum_{i=1}^{m} b_iu_i + \displaystyle\sum_{j=1}^{n} c_jv_j = 0 }[/math], then [math]\displaystyle{ b_i = c_j = 0 }[/math].
Then [math]\displaystyle{ B_1 \cup B_2 }[/math] is linearly independent.
Then [math]\displaystyle{ B_1 \cup B_2 }[/math] is a basis of [math]\displaystyle{ span(W_1 \cup W_2) }[/math].
Since [math]\displaystyle{ \left| B_1 \cup B_2 \right| = \left| B_1 \right| + \left| B_2 \right| }[/math], then [math]\displaystyle{ dim(span(W_1 \cup W_2)) = dim(W_1) + dim(W_2) }[/math]. Q.E.D.

Nikita

File:1014.240.pdf