14-240/Tutorial-October14: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 75: Line 75:




For a field <math>F</math>, determine if the matrix
For an arbitrary field <math>F</math>, determine if the matrix
<math>
<math>
\begin{pmatrix}
\begin{pmatrix}
Line 259: Line 259:
\end{pmatrix}
\end{pmatrix}
\in span(S) \iff char(F)=2</math>. ''Q.E.D.''
\in span(S) \iff char(F)=2</math>. ''Q.E.D.''



====A Field Problem====
====A Field Problem====

Revision as of 00:31, 15 October 2014

Boris

Elementary and (Not So Elementary) Errors in Homework

(1) Bad Notation


Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} } be matrices.


We want to equate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle span(M_1, M_2, M_3)} to the set of all symmetric Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \times 2} matrices. Here is the wrong way to write this:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle span(M_1, M_2, M_3) = \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} } .


Firstly, is the set of all linear combinations of . To equate it to a single

symmetric matrix makes no sense. Secondly, the elements are undefined. What are they suppose to

represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those issues:


where is an arbitrary field.


(2) Algorithm vs. Proof

When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show:

a) An algorithm for finding the solution
b) A proof that a solution is correct

If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this:

Determine if the vector is a linear combination of the vectors in .

Show both (a) and (b) to be on the safe side.

Problem 5h) of Homework 3 for all Fields

For an arbitrary field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} , determine if the matrix Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} } is in span Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S=\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} \} } .


Proof:

We show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2} .

We show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) } .
Assume that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F)=2} .
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1=0, c_2=1, c_3=1} .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_1, c_2, c_3 \in F} .
Then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} } .
Since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F)=2} and the entries of the matrix are from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0=2} .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) } .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) } .
We show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F) \neq 2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) } .
Assume to the contrary that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F) \neq 2 \and \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) } .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists c_1, c_2, c_3 \in F, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} =c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} +c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} +c_3 \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} } .
Then this system of linear equations has a solution:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (11)c_1+c_3=1}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (21)-c_1=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (12)c_2+c_3=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (22)c_2=1} .
When solving the system, we see that it has no solution.
This contradicts the assumption that it has a solution.
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle char(F) \neq2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) } .
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2} . Q.E.D.

A Field Problem

A Dimension Problem