14-240/Tutorial-October14: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
Line 45: Line 45:
<math>2 \times 2</math> matrix makes no sense. Secondly, the elements <math>a, b, c, d</math> are undefined. What are they suppose to
<math>2 \times 2</math> matrix makes no sense. Secondly, the elements <math>a, b, c, d</math> are undefined. What are they suppose to


represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those
represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those issues:

issues:




Line 73: Line 71:


Show both (a) and (b) to be on the safe side.
Show both (a) and (b) to be on the safe side.



====Problem 5h) of Homework 3 for all Fields====
====Problem 5h) of Homework 3 for all Fields====

Revision as of 00:30, 15 October 2014

Boris

Elementary and (Not So Elementary) Errors in Homework

(1) Bad Notation


Let [math]\displaystyle{ M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} }[/math] be matrices.


We want to equate [math]\displaystyle{ span(M_1, M_2, M_3) }[/math] to the set of all symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrices. Here is the wrong way to write this:


[math]\displaystyle{ span(M_1, M_2, M_3) = \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} }[/math].


Firstly, [math]\displaystyle{ span(M_1, M_2, M_2) }[/math] is the set of all linear combinations of [math]\displaystyle{ M_1, M_2, M_3 }[/math]. To equate it to a single

symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrix makes no sense. Secondly, the elements [math]\displaystyle{ a, b, c, d }[/math] are undefined. What are they suppose to

represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those issues:


[math]\displaystyle{ span(M_1, M_2, M_3) = \{ \begin{pmatrix} a & b \\ b & c \\ \end{pmatrix} :a, b, c \in F \} }[/math] where [math]\displaystyle{ F }[/math] is an arbitrary field.


(2) Algorithm vs. Proof

When solving a problem that requires a solution to a linear equation, it is not always obvious if you should show:

a) An algorithm for finding the solution
b) A proof that a solution is correct

If the problem asks to solve a linear equation, then just show (a). Otherwise, for problems such as this:

Determine if the vector [math]\displaystyle{ (-2, 2, 2) }[/math] is a linear combination of the vectors [math]\displaystyle{ (- (1, 2, -1), (-3, -3, 3) }[/math] in [math]\displaystyle{ R^3 }[/math].

Show both (a) and (b) to be on the safe side.

Problem 5h) of Homework 3 for all Fields

For a field [math]\displaystyle{ F }[/math], determine if the matrix [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} }[/math] is in span [math]\displaystyle{ S=\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} \} }[/math].


Proof:

We show that [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math].

We show that [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Assume that [math]\displaystyle{ char(F)=2 }[/math].
Let [math]\displaystyle{ c_1=0, c_2=1, c_3=1 }[/math].
Then [math]\displaystyle{ c_1, c_2, c_3 \in F }[/math].
Then [math]\displaystyle{ c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} + c_3 = 0 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + 1 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} + 1 = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} }[/math]
[math]\displaystyle{ = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} }[/math].
Since [math]\displaystyle{ char(F)=2 }[/math] and the entries of the matrix are from [math]\displaystyle{ F }[/math], then [math]\displaystyle{ 0=2 }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ char(F)=2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
We show that [math]\displaystyle{ char(F) \neq 2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Assume to the contrary that [math]\displaystyle{ char(F) \neq 2 \and \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) }[/math].
Then [math]\displaystyle{ \exists c_1, c_2, c_3 \in F, \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} =c_1 \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ \end{pmatrix} +c_2 \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ \end{pmatrix} +c_3 \begin{pmatrix} 1 & 1 \\ 0 & 0 \\ \end{pmatrix} }[/math].
Then this system of linear equations has a solution:
[math]\displaystyle{ (11)c_1+c_3=1 }[/math]
[math]\displaystyle{ (21)-c_1=0 }[/math]
[math]\displaystyle{ (12)c_2+c_3=0 }[/math]
[math]\displaystyle{ (22)c_2=1 }[/math].
When solving the system, we see that it has no solution.
This contradicts the assumption that it has a solution.
Then [math]\displaystyle{ char(F) \neq2 \implies \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \notin span(S) }[/math].
Then [math]\displaystyle{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix} \in span(S) \iff char(F)=2 }[/math]. Q.E.D.


A Field Problem

A Dimension Problem