14-240/Tutorial-October14: Difference between revisions
(→Boris) |
|||
| Line 21: | Line 21: | ||
1 & 0 \\ |
1 & 0 \\ |
||
\end{pmatrix} |
\end{pmatrix} |
||
</math>. |
</math> be matrices. |
||
| ⚫ | |||
| ⚫ | |||
Here is the wrong way to do it: |
|||
<math> |
<math> |
||
| Line 34: | Line 35: | ||
</math>. |
</math>. |
||
| ⚫ | Firstly, <math>span(M_1, M_2, M_2)</math> is |
||
| ⚫ | Firstly, <math>span(M_1, M_2, M_2)</math> is the set of all linear combinations of <math>M_1, M_2, M_3</math>. To equate it to a single symmetric <math>2 \times 2</math> matrix makes no sense. Secondly, the elements <math>a, b, c, d</math> are undefined. What are they suppose to represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those issues. |
||
Here is a better way to do it: |
|||
<math> |
<math> |
||
Revision as of 16:59, 14 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Elementary and (Not So Elementary) Errors in Homework
(1) Let [math]\displaystyle{ M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ \end{pmatrix} }[/math] be matrices.
We want to equate [math]\displaystyle{ span(M_1, M_2, M_3) }[/math] to the set of all symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrices. Here is the wrong way to write this:
[math]\displaystyle{
span(M_1, M_2, M_3) =
\begin{pmatrix}
a & b \\
b & c \\
\end{pmatrix}
}[/math].
Firstly, [math]\displaystyle{ span(M_1, M_2, M_2) }[/math] is the set of all linear combinations of [math]\displaystyle{ M_1, M_2, M_3 }[/math]. To equate it to a single symmetric [math]\displaystyle{ 2 \times 2 }[/math] matrix makes no sense. Secondly, the elements [math]\displaystyle{ a, b, c, d }[/math] are undefined. What are they suppose to represent? Rational numbers? Real numbers? Members of the field of two elements? The following way of writing erases those issues.
[math]\displaystyle{
span(M_1, M_2, M_3) = \{
\begin{pmatrix}
a & b \\
b & c \\
\end{pmatrix}
:a, b, c \in F \}
}[/math] where [math]\displaystyle{ F }[/math] is an arbitrary field.