14-240/Tutorial-Sep30: Difference between revisions
From Drorbn
Jump to navigationJump to search
| Line 43: | Line 43: | ||
| <math>b</math> |
| <math>b</math> |
||
|} |
|} |
||
We verify that |
|||
==Nikita== |
==Nikita== |
||
Revision as of 21:11, 4 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Problem
Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:
- [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
- [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].
Solution:
Let [math]\displaystyle{ S = \{ a, b \} }[/math] where [math]\displaystyle{ a }[/math] is the additive identity and [math]\displaystyle{ b }[/math] is the multiplicative identity and [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:
| [math]\displaystyle{ + }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
|---|---|---|
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ \times }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
|---|---|---|
| [math]\displaystyle{ b }[/math] | [math]\displaystyle{ b }[/math] | [math]\displaystyle{ a }[/math] |
| [math]\displaystyle{ a }[/math] | [math]\displaystyle{ a }[/math] | [math]\displaystyle{ b }[/math] |