14-240/Tutorial-Sep30: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 31: Line 31:
{| class="wikitable"
{| class="wikitable"
|-
|-
! <math> \times </math>
! <math>\times</math>
! 0
! <math>a</math>
! 1
! <math>b</math>
|-
|-
! 0
! <math>a</math>
| 0
| 0
| 0
| 0
|-
|-
! 1
! <math>b</math>
| 0
| 0
| 1
| 1

Revision as of 20:47, 4 October 2014

Boris

Problem

Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:

  • [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
  • [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].

Solution:

Let [math]\displaystyle{ a \in S }[/math] be the additive identity and [math]\displaystyle{ b \in S }[/math] be the multiplicative identity where [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:

[math]\displaystyle{ + }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ a }[/math] 0 1
[math]\displaystyle{ b }[/math] 1 0
[math]\displaystyle{ \times }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ a }[/math] 0 0
[math]\displaystyle{ b }[/math] 0 1

Nikita