14-240/Tutorial-Sep30: Difference between revisions
From Drorbn
Jump to navigationJump to search
| Line 8: | Line 8: | ||
* <math>S</math> satisfies all the properties of the field except distributivity. |
* <math>S</math> satisfies all the properties of the field except distributivity. |
||
* <math>\exists x \in S, 0x\neq 0</math>. |
* <math>\exists x \in S, 0x \neq 0</math>. |
||
Solution: |
Solution: |
||
Let <math>a \in S</math> be the additive identity and <math>b \in S</math> be the multiplicative identity where <math>a \neq b</math>. |
|||
==Nikita== |
==Nikita== |
||
Revision as of 20:35, 4 October 2014
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boris
Problem
Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:
- [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.
- [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].
Solution:
Let [math]\displaystyle{ a \in S }[/math] be the additive identity and [math]\displaystyle{ b \in S }[/math] be the multiplicative identity where [math]\displaystyle{ a \neq b }[/math].