14-240/Tutorial-December 2: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "{{14-240/Navigation}} ==Boris== ==Nikita==")
 
 
(15 intermediate revisions by 2 users not shown)
Line 2: Line 2:


==Boris==
==Boris==

====Theorem====

Let <math>A</math> be a <math>n \times n</math> matrix and <math>B</math> be the matrix <math>A</math> with two rows interchanged. Then <math>det(A) = -det(B)</math>. Boris decided to prove the following lemma first:

=====Lemma 1=====

Let <math>A</math> be a <math>n \times n</math> matrix and <math>B</math> be the matrix <math>A</math> with two '''adjacent''' rows interchanged. Then <math>det(A) = -det(B)</math>.


All we need to show is that <math>det(A) + det(B) = 0</math>. Assume that <math>B</math> is the matrix <math>A</math> with rows <math>i, i + 1</math> of <math>A</math> interchanged. Since the determinant of a matrix with two identical rows is <math>0</math>, then:


:::::::<math>det(A) + det(B) =</math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} =</math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix}</math>.


Since the determinant is linear in each row, then we continue where we left off:


:::::::<math>det(A) + det(B) =</math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = </math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0</math>.


Then <math>det(A) + det(B) = 0</math> and <math>det(A) = -det(B)</math>. The proof of the lemma is complete.


For the proof of the theorem, assume that <math>B</math> is the matrix <math>A</math> with rows <math>i, j</math> of <math>A</math> interchanged and <math>i \neq j</math>. By '''Lemma 1''', we have the following:


:::::::<math>det(A) =</math>


:::::::<math>det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\\A_j\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} = (-1)^{j - i}det\begin{pmatrix}...\\A_{i + 1}\\...\\A_j\\A_i\\...\end{pmatrix} =</math>



:::::::<math>(-1)^{j - i}(-1)^{j - i - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)^{2(j - i) - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>



:::::::<math>(-1)^{- 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} =</math>



:::::::<math>-det(B)</math>.


Then the proof of the theorem is complete.


==Nikita==
==Nikita==
==Scanned Tutorial Notes by [[User Boyang.wu|Boyang.wu]]==
[[File:Tut.pdf]]

Latest revision as of 11:55, 9 December 2014

Boris

Theorem

Let [math]\displaystyle{ A }[/math] be a [math]\displaystyle{ n \times n }[/math] matrix and [math]\displaystyle{ B }[/math] be the matrix [math]\displaystyle{ A }[/math] with two rows interchanged. Then [math]\displaystyle{ det(A) = -det(B) }[/math]. Boris decided to prove the following lemma first:

Lemma 1

Let [math]\displaystyle{ A }[/math] be a [math]\displaystyle{ n \times n }[/math] matrix and [math]\displaystyle{ B }[/math] be the matrix [math]\displaystyle{ A }[/math] with two adjacent rows interchanged. Then [math]\displaystyle{ det(A) = -det(B) }[/math].


All we need to show is that [math]\displaystyle{ det(A) + det(B) = 0 }[/math]. Assume that [math]\displaystyle{ B }[/math] is the matrix [math]\displaystyle{ A }[/math] with rows [math]\displaystyle{ i, i + 1 }[/math] of [math]\displaystyle{ A }[/math] interchanged. Since the determinant of a matrix with two identical rows is [math]\displaystyle{ 0 }[/math], then:


[math]\displaystyle{ det(A) + det(B) = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} }[/math].


Since the determinant is linear in each row, then we continue where we left off:


[math]\displaystyle{ det(A) + det(B) = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i\\...\end{pmatrix} + det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\end{pmatrix} = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_i + A_{i + 1}\\...\end{pmatrix} + det\begin{pmatrix}...\\A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = det\begin{pmatrix}...\\A_i + A_{i + 1}\\A_i + A_{i + 1}\\...\end{pmatrix} = 0 }[/math].


Then [math]\displaystyle{ det(A) + det(B) = 0 }[/math] and [math]\displaystyle{ det(A) = -det(B) }[/math]. The proof of the lemma is complete.


For the proof of the theorem, assume that [math]\displaystyle{ B }[/math] is the matrix [math]\displaystyle{ A }[/math] with rows [math]\displaystyle{ i, j }[/math] of [math]\displaystyle{ A }[/math] interchanged and [math]\displaystyle{ i \neq j }[/math]. By Lemma 1, we have the following:


[math]\displaystyle{ det(A) = }[/math]


[math]\displaystyle{ det\begin{pmatrix}...\\A_i\\A_{i + 1}\\...\\A_j\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_{i + 1}\\A_i\\...\\A_j\\...\end{pmatrix} = (-1)^{j - i}det\begin{pmatrix}...\\A_{i + 1}\\...\\A_j\\A_i\\...\end{pmatrix} = }[/math]


[math]\displaystyle{ (-1)^{j - i}(-1)^{j - i - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)^{2(j - i) - 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = }[/math]


[math]\displaystyle{ (-1)^{- 1}det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = (-1)det\begin{pmatrix}...\\A_j\\A_{i + 1}\\...\\A_i\\...\end{pmatrix} = }[/math]


[math]\displaystyle{ -det(B) }[/math].


Then the proof of the theorem is complete.

Nikita

Scanned Tutorial Notes by Boyang.wu

File:Tut.pdf