14-240/Tutorial-Sep30: Difference between revisions

From Drorbn
Jump to navigationJump to search
 
(2 intermediate revisions by the same user not shown)
Line 54: Line 54:


(1) Prove <math>A \implies B</math>. Assume <math>A</math> and derive <math>B</math>. It is not the other way around.
(1) Prove <math>A \implies B</math>. Assume <math>A</math> and derive <math>B</math>. It is not the other way around.



(2) Prove <math>A \iff B</math>. Show that <math>A \implies B</math> and <math>B \implies A</math>.
(2) Prove <math>A \iff B</math>. Show that <math>A \implies B</math> and <math>B \implies A</math>.



(3) '''This is for Boris's section only'''. When a proof requires a previous result, there are two possibilities:
(3) '''This is for Boris's section only'''. When a proof requires a previous result, there are two possibilities:
Line 63: Line 61:
:(a) The result is already proved in class or in a previous homework. Then state the result and use it without proof.
:(a) The result is already proved in class or in a previous homework. Then state the result and use it without proof.


:(b) The result is neither proved in class nor in a previous homework. Then prove it before using its result.
:(b) The result is neither proved in class nor in a previous homework. Then reference it in the textbook or prove it yourself.


==Nikita==
==Nikita==

Latest revision as of 23:13, 4 October 2014

Boris

Problem

Find a set [math]\displaystyle{ S }[/math] of two elements that satisfies the following:

(1) [math]\displaystyle{ S }[/math] satisfies all the properties of the field except distributivity.

(2) [math]\displaystyle{ \exists x \in S, 0x \neq 0 }[/math].

Solution:

Let [math]\displaystyle{ S = \{ a, b \} }[/math] where [math]\displaystyle{ a }[/math] is the additive identity and [math]\displaystyle{ b }[/math] is the multiplicative identity and [math]\displaystyle{ a \neq b }[/math]. After trial and error, we have the following addition and multiplication tables:

[math]\displaystyle{ + }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ a }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]
[math]\displaystyle{ b }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ \times }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ b }[/math] [math]\displaystyle{ b }[/math] [math]\displaystyle{ a }[/math]
[math]\displaystyle{ a }[/math] [math]\displaystyle{ a }[/math] [math]\displaystyle{ b }[/math]


We verify that [math]\displaystyle{ S }[/math] satisfies (1). By the addition and multiplication tables, then [math]\displaystyle{ S }[/math] satisfies closure, commutativity, associativity and existence of identities and inverses. Since [math]\displaystyle{ a(b + b) = a(a) = b \neq a = a + a = ab + ab }[/math], then [math]\displaystyle{ S }[/math] does not satisfy distributivity. Then [math]\displaystyle{ S }[/math] satisfies (1).


We verify that [math]\displaystyle{ S }[/math] satisfies (2). Since [math]\displaystyle{ aa = b \neq a }[/math], then [math]\displaystyle{ S }[/math] satisfies (2).

Elementary Errors in Homework

(1) Prove [math]\displaystyle{ A \implies B }[/math]. Assume [math]\displaystyle{ A }[/math] and derive [math]\displaystyle{ B }[/math]. It is not the other way around.

(2) Prove [math]\displaystyle{ A \iff B }[/math]. Show that [math]\displaystyle{ A \implies B }[/math] and [math]\displaystyle{ B \implies A }[/math].

(3) This is for Boris's section only. When a proof requires a previous result, there are two possibilities:

(a) The result is already proved in class or in a previous homework. Then state the result and use it without proof.
(b) The result is neither proved in class nor in a previous homework. Then reference it in the textbook or prove it yourself.

Nikita