14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(20 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{14-240/Navigation}}
Definition:
==Definition of Subtraction and Division==
Subtract: if <math>a , b </math>belong to <math>F , a - b = a + (-b)</math>.
Divition: if <math>a , b </math>belong to F , <math>a / b = a * (b to the power (-1)</math>.
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
* Division: if <math>a, b \in F, a / b = a \times b^{-1}</math>.


==Basic Properties of a Field (cont'd)==
Theorem:


8. For every <math>a belongs to F , a * 0 = 0</math>.
'''8.''' <math>\forall a \in F</math>, <math>a \times 0 = 0</math>.
;Proof of 8
proof of 8: By F3 , <math>a * 0 = a * (0 + 0)</math>;
By F5 , <math>a * (0 + 0) = a * 0 + a * 0</math>;
:By F3 , <math>a \times 0 = a \times (0 + 0)</math>
By F3 , <math>a * 0 = 0 + a * 0</math>;
:By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>;
By Thm P1 ,<math>0 = a * 0</math>.
:By F3 , <math>a \times 0 = 0 + a \times 0</math>;
:By Thm P1, <math>0 = a \times 0</math>.
9. There not exists <math>b belongs to F s.t. 0 * b = 1</math>;
'''9.''' <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>;
For every <math>b belongs to F s.t. 0 * b </math>is not equal to <math>1</math>.
:<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>.
;Proof of 9
proof of 9: By F3 , <math>0 * b = 0 </math>is not equal to <math>1</math>.
:By F3 , <math>\times b = 0 \neq 1</math>.

10. <math>(-a) * b = a * (-b) = -(a * b)</math>.
'''10.''' <math>(-a) \times b = a \times (-b) = -(a \times b)</math>.
11. <math>(-a) * (-b) = a * b</math>.
'''11.''' <math>(-a) \times (-b) = a \times b</math>.
12. <math>a * b = 0 iff a = 0 or b = 0</math>.
'''12.''' <math>a \times b = 0 \iff a = 0</math> or <math>b = 0</math>.
;Proof of 12
proof of 12: <= : By P8 , <math>if a = 0 , then a * b = 0 * b = 0</math>;
:'''<= :'''
By P8 , <math>if b = 0 , then a * b = a * 0 = 0</math>.
=> : Assume <math>a * b = 0</math> , if a = 0 we have done;
:By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>;
Otherwise , by P8 , <math>a </math>is not equal to <math>0 </math>and we have <math>a * b = 0 = a * 0</math>;
:By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>.
:'''=> :''' Assume <math>a \times b = 0 </math> , if a = 0 we are done;
by cancellation (P2) , <math>b = 0</math>.
:Otherwise , by P8 , <math>a \neq 0 </math> and we have <math>a \times b = 0 = a \times 0</math>;
:by cancellation (P2) , <math>b = 0</math>.
<math>(a + b) * (a - b) = a square - b square</math>.
<math>(a + b) \times (a - b) = a^2 - b^2</math>.
;Proof
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b))
= a * a + a * (-b) + b * a + (-b) * b
:By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math>
:<math>= a^2 - b^2</math>
= a square - b square</math>
Theorem :
There exists !(unique) <math>iota : Z ---> F</math> s.t.
1. <math>iota(0) = 0 , iota(1) = 1</math>;
2. For every <math>m ,n</math> belong to Z , <math>iota(m+n) = iota(m) + iota(n)</math>;
3. >For every <math>m ,n</math> belong to Z , <math>iota(m*n) = iota(m) * iota(n)</math>.


==Theorem==
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
<math>\exists! \iota : \Z \rightarrow F</math> s.t.
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
:1. <math>\iota(0) = 0 , \iota(1) = 1</math>;
......
:2. <math>\forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n)</math>;
:3. <math>\forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)</math>.

;Examples
<math>\iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;</math>
<math>\iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1;</math>

......
In F2:
In F2 , <math>27 ----> iota(27) = iota(26 + 1)
<math>
= iota(26) + iota(1)
\begin{align}
= iota(26) + 1
27 ----> \iota(27) &= \iota(26 + 1)\\
= iota(13 * 2) + 1
= iota(2) * iota(13) + 1
&= \iota(26) + \iota(1)\\
&= \iota(26) + 1\\
= (1 + 1) * iota(13) + 1
&= \iota(13 \times 2) + 1\\
= 0 * iota(13) + 1
&= \iota(2) \times \iota(13) + 1\\
= 1</math>
&= (1 + 1) \times \iota(13) + 1\\
&= 0 \times \iota(13) + 1\\
&= 1
\end{align}
</math>

==Scanned Lecture Notes by [[User:AM|AM]]==

<gallery>
File:MAT 240 lecture 3 (1 of 2).pdf|page 1
File:MAT240 lectuire 3 (2 of 2).pdf|page 2
</gallery>
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]==

[[File:W21.pdf]]

Latest revision as of 00:57, 8 December 2014

Definition of Subtraction and Division

  • Subtraction: if .
  • Division: if .

Basic Properties of a Field (cont'd)

8. , .

Proof of 8
By F3 ,
By F5 , ;
By F3 , ;
By Thm P1, .

9. s.t. ;

s.t. .
Proof of 9
By F3 , .

10. .

11. .

12. or .

Proof of 12
<= :
By P8 , if , then ;
By P8 , if , then .
=> : Assume , if a = 0 we are done;
Otherwise , by P8 , and we have ;
by cancellation (P2) , .

.

Proof
By F5 ,

Theorem

s.t.

1. ;
2. ;
3. .
Examples

......

In F2:

Scanned Lecture Notes by AM

Scanned Lecture Notes by Boyang.wu

File:W21.pdf