|
|
(21 intermediate revisions by 7 users not shown) |
Line 1: |
Line 1: |
|
|
{{14-240/Navigation}} |
|
Definition: |
|
|
|
==Definition of Subtraction and Division== |
⚫ |
Subtract: if <math>a , b belong to F , a - b = a + (-b )</math>. |
|
|
Divition: if <math>a , b belong to F , a / b = a * (b to the power (-1)</math>. |
|
* Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
|
⚫ |
* Division: if <math>a, b \in F, a / b = a \times b ^{-1}</math>. |
|
|
|
|
|
|
==Basic Properties of a Field (cont'd)== |
⚫ |
|
|
|
|
|
|
|
8. For every <math>a belongs to F , a * 0 = 0</math>.
|
|
'''8.''' <math>\forall a \in F</math>, <math>a \times 0 = 0</math>. |
|
|
;Proof of 8 |
|
proof of 8: By F3 , <math>a * 0 = a * (0 + 0)</math>; |
|
|
By F5 , <math>a * (0 + 0) = a * 0 + a * 0</math>;
|
|
:By F3 , <math>a \times 0 = a \times (0 + 0)</math> |
|
By F3 , <math>a * 0 = 0 + a * 0</math>;
|
|
:By F5 , <math>a \times (0 + 0) = a \times 0 + a \times 0</math>; |
|
By Thm P1 ,<math>0 = a * 0</math>.
|
|
:By F3 , <math>a \times 0 = 0 + a \times 0</math>; |
|
|
:By Thm P1, <math>0 = a \times 0</math>. |
|
|
|
|
|
9. There not exists <math>b belongs to F s.t. 0 * b = 1</math>;
|
|
'''9.''' <math>\nexists b \in F</math> s.t. <math>0 \times b = 1</math>; |
|
For every <math>b belongs to F s.t. 0 * b is not equal to 1</math>.
|
|
:<math>\forall b \in F</math> s.t. <math>0 \times b \neq 1</math>. |
|
|
;Proof of 9 |
|
proof of 9: By F3 , <math>0 * b = 0 is not equal to 1</math>. |
|
|
|
:By F3 , <math>\times b = 0 \neq 1</math>. |
|
|
|
|
|
|
|
10. <math>(-a) * b = a * (-b) = -(a * b)</math>.
|
|
'''10.''' <math>(-a) \times b = a \times (-b) = -(a \times b)</math>. |
|
|
|
|
|
11. <math>(-a) * (-b) = a * b</math>.
|
|
'''11.''' <math>(-a) \times (-b) = a \times b</math>. |
|
|
|
|
|
12. <math>a * b = 0 iff a = 0 or b = 0</math>.
|
|
'''12.''' <math>a \times b = 0 \iff a = 0</math> or <math>b = 0</math>. |
|
|
;Proof of 12 |
|
proof of 12: <= : By P8 , <math>if a = 0 , then a * b = 0 * b = 0</math>; |
|
|
|
:'''<= :''' |
⚫ |
By P8 , <math>if b = 0 , then a * b = a * 0 = 0</math>. |
|
|
=> : Assume <math>a * b = 0</math> , if a = 0 we have done; |
|
:By P8 , if <math>a = 0</math> , then <math>a \times b = 0 \times b = 0</math>; |
|
Otherwise , by P8 , <math>a is not equal to 0 and we have a * b = 0 = a * 0</math>; |
|
:By P8 , if <math>b = 0</math> , then <math>a \times b = a \times 0 = 0</math>. |
|
|
:'''=> :''' Assume <math>a \times b = 0 </math> , if a = 0 we are done; |
⚫ |
by cancellation (P2) , <math>b = 0</math>. |
|
|
|
:Otherwise , by P8 , <math>a \neq 0 </math> and we have <math>a \times b = 0 = a \times 0</math>; |
|
⚫ |
:by cancellation (P2) , <math>b = 0</math>. |
|
|
|
|
|
<math>(a + b) * (a - b) = a square - b square</math>. |
|
<math>(a + b) \times (a - b) = a^2 - b^2</math>. |
|
|
;Proof |
|
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b)) |
|
|
= a * a + a * (-b) + b * a + (-b) * b |
|
:By F5 , <math>(a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))</math> |
|
|
:<math>= a^2 - b^2</math> |
|
= a square - b square</math> |
|
|
Theorem : |
|
⚫ |
There exists ! (unique) <math>iota : Z ---> F</math> s.t. |
|
⚫ |
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
|
⚫ |
2. <math> For every m ,n belong to Z , iota(m+n) = iota(m) + iota(n)</math>; |
|
⚫ |
3. <math> For every m ,n belong to Z , iota(m *n) = iota(m) * iota(n)</math>. |
|
|
|
|
|
|
⚫ |
|
⚫ |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
|
|
⚫ |
<math>\exists! \iota : \Z \rightarrow F</math> s.t. |
⚫ |
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1; |
|
|
⚫ |
:1. <math> \iota(0) = 0 , \iota(1) = 1</math>; |
|
...... |
|
|
⚫ |
:2. <math> \forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n)</math>; |
|
⚫ |
:3. <math> \forall m ,n \in \Z, \iota(m \times n) = \iota(m) \times \iota(n)</math>. |
|
|
|
|
|
;Examples |
|
⚫ |
<math>\iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1; </math> |
|
⚫ |
<math>\iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1; </math> |
|
|
|
|
⚫ |
|
|
|
|
|
|
|
In F2: |
⚫ |
In F2 , <math>27 ----> iota(27) = iota(26 + 1) |
|
|
|
<math> |
|
= iota(26) + iota(1) |
|
|
|
\begin{align} |
|
= iota(26) + 1 |
|
|
⚫ |
27 ----> \iota(27) &= \iota(26 + 1) \\ |
|
= iota(13 * 2) + 1 |
|
|
= iota(2) * iota(13) + 1
|
|
&= \iota(26) + \iota(1)\\ |
|
|
&= \iota(26) + 1\\ |
|
= (1 + 1) * iota(13) + 1 |
|
|
|
&= \iota(13 \times 2) + 1\\ |
|
= 0 * iota(13) + 1 |
|
|
|
&= \iota(2) \times \iota(13) + 1\\ |
|
= 1</math> |
|
|
|
&= (1 + 1) \times \iota(13) + 1\\ |
|
|
&= 0 \times \iota(13) + 1\\ |
|
|
&= 1 |
|
|
\end{align} |
|
|
</math> |
|
|
|
|
|
==Scanned Lecture Notes by [[User:AM|AM]]== |
|
|
|
|
|
<gallery> |
|
|
File:MAT 240 lecture 3 (1 of 2).pdf|page 1 |
|
|
File:MAT240 lectuire 3 (2 of 2).pdf|page 2 |
|
|
</gallery> |
|
|
==Scanned Lecture Notes by [[User Boyang.wu|Boyang.wu]]== |
|
|
|
|
|
[[File:W21.pdf]] |
Welcome to Math 240! (additions to this web site no longer count towards good deed points)
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 8
|
About This Class, What is this class about? (PDF, HTML), Monday, Wednesday
|
2
|
Sep 15
|
HW1, Monday, Wednesday, TheComplexField.pdf,HW1_solutions.pdf
|
3
|
Sep 22
|
HW2, Class Photo, Monday, Wednesday, HW2_solutions.pdf
|
4
|
Sep 29
|
HW3, Wednesday, Tutorial, HW3_solutions.pdf
|
5
|
Oct 6
|
HW4, Monday, Wednesday, Tutorial, HW4_solutions.pdf
|
6
|
Oct 13
|
No Monday class (Thanksgiving), Wednesday, Tutorial
|
7
|
Oct 20
|
HW5, Term Test at tutorials on Tuesday, Wednesday
|
8
|
Oct 27
|
HW6, Monday, Why LinAlg?, Wednesday, Tutorial
|
9
|
Nov 3
|
Monday is the last day to drop this class, HW7, Monday, Wednesday, Tutorial
|
10
|
Nov 10
|
HW8, Monday, Tutorial
|
11
|
Nov 17
|
Monday-Tuesday is UofT November break
|
12
|
Nov 24
|
HW9
|
13
|
Dec 1
|
Wednesday is a "makeup Monday"! End-of-Course Schedule, Tutorial
|
F
|
Dec 8
|
The Final Exam
|
Register of Good Deeds
|
Add your name / see who's in!
|
|
|
Definition of Subtraction and Division
- Subtraction: if .
- Division: if .
Basic Properties of a Field (cont'd)
8. , .
- Proof of 8
- By F3 ,
- By F5 , ;
- By F3 , ;
- By Thm P1, .
9. s.t. ;
- s.t. .
- Proof of 9
- By F3 , .
10. .
11. .
12. or .
- Proof of 12
- <= :
- By P8 , if , then ;
- By P8 , if , then .
- => : Assume , if a = 0 we are done;
- Otherwise , by P8 , and we have ;
- by cancellation (P2) , .
.
- Proof
- By F5 ,
Theorem
s.t.
- 1. ;
- 2. ;
- 3. .
- Examples
......
In F2:
Scanned Lecture Notes by AM
Scanned Lecture Notes by Boyang.wu
File:W21.pdf